使用" NaN"将Pandas DataFrame中的列值连接起来。值

时间:2014-05-03 13:09:30

标签: python pandas concatenation dataframe

我正在尝试使用NaN值连接Pandas DataFrame列。

In [96]:df = pd.DataFrame({'col1' : ["1","1","2","2","3","3"],
                'col2'  : ["p1","p2","p1",np.nan,"p2",np.nan], 'col3' : ["A","B","C","D","E","F"]})

In [97]: df
Out[97]: 
  col1 col2 col3
0    1   p1    A
1    1   p2    B
2    2   p1    C
3    2  NaN    D
4    3   p2    E
5    3  NaN    F

In [98]: df['concatenated'] = df['col2'] +','+ df['col3']
In [99]: df
Out[99]: 
  col1 col2 col3 concatenated
0    1   p1    A         p1,A
1    1   p2    B         p2,B
2    2   p1    C         p1,C
3    2  NaN    D          NaN
4    3   p2    E         p2,E
5    3  NaN    F          NaN

而不是“连接”列中的“NaN”值,我想分别为此示例获得“D”和“F”?

3 个答案:

答案 0 :(得分:16)

我不认为你的问题是微不足道的。但是,这是一个使用numpy矢量化的解决方法:

In [49]: def concat(*args):
    ...:     strs = [str(arg) for arg in args if not pd.isnull(arg)]
    ...:     return ','.join(strs) if strs else np.nan
    ...: np_concat = np.vectorize(concat)
    ...: 

In [50]: np_concat(df['col2'], df['col3'])
Out[50]: 
array(['p1,A', 'p2,B', 'p1,C', 'D', 'p2,E', 'F'], 
      dtype='|S64')

In [51]: df['concatenated'] = np_concat(df['col2'], df['col3'])

In [52]: df
Out[52]: 
  col1 col2 col3 concatenated
0    1   p1    A         p1,A
1    1   p2    B         p2,B
2    2   p1    C         p1,C
3    2  NaN    D            D
4    3   p2    E         p2,E
5    3  NaN    F            F

[6 rows x 4 columns]

答案 1 :(得分:8)

您可以先用空字符串替换NaN,对于整个数据框或您想要的列。

In [6]: df = df.fillna('')

In [7]: df['concatenated'] = df['col2'] +','+ df['col3']

In [8]: df
Out[8]:
  col1 col2 col3 concatenated
0    1   p1    A         p1,A
1    1   p2    B         p2,B
2    2   p1    C         p1,C
3    2         D           ,D
4    3   p2    E         p2,E
5    3         F           ,F

答案 2 :(得分:0)

我们可以使用stack删除NaN,然后使用groupby.agg','.join字符串:

df['concatenated'] = df[['col2', 'col3']].stack().groupby(level=0).agg(','.join)
  col1 col2 col3 concatenated
0    1   p1    A         p1,A
1    1   p2    B         p2,B
2    2   p1    C         p1,C
3    2  NaN    D            D
4    3   p2    E         p2,E
5    3  NaN    F            F