矢量化的类似的字符串查找循环

时间:2014-05-01 12:05:00

标签: string r vectorization levenshtein-distance stringr

我有一个很大的字符串向量:

d <- c("herb", "market", "merchandise", "fun", "casket93", "old", "herbb", "basket", "bottle", "plastic", "baskket", "markket", "pasword", "plastik", "oldg", "mahagony", "mahaagoni", "sim23", "asket", "trump" )

我不想从同一个向量d中为每个字符串获取类似的字符串。

我是这样做的 1.根据某些规则计算每个字符串与所有其他字符串的编辑距离,例如,如果存在任何数字或者字母字符数小于5,则强制精确匹配。
2.将其与字符串一起放入数据帧dist中 3.基于距离的子集化dist&lt; 3.
4.将类似的字符串折叠并添加到原始数据框作为新列。

我正在使用stringrstringdist个套件

d <-as.data.frame(d)
M <- nrow(d)
Dist <- data.frame(matrix(nrow=M, ncol=2)) 
colnames(Dist) <- c("string" ,"dist")
Dist$string <- d$d
d$sim <- character(length=M)

require(stringr)
require(stringdist)

for (i in 1:M){
  # if string has digits or is of short size (<5) do exact matching
  if (grepl("[[:digit:]]", d[i, "d"], ignore.case=TRUE) == TRUE || str_count(d[i, "d"], "[[:alpha:]]") < 5){
    Dist$dist <- stringdist(d[i, "d"], d$d, method="lv", maxDist=0.000001) # maxDist as fraction to force exact matching
  # otherwise do approximate matching
  } else  {
    Dist$dist <- stringdist(d[i, "d"], d$d, method="lv", maxDist=3)
  }
  # subset similar strings (with edit distance <3)
  subDist <- subset(Dist, dist < 3 )
  # add to original data.frame d
  d[i, "sim"] <- paste(as.character(unlist(subDist$string)), collapse=", ")
}

是否可以矢量化程序而不是使用循环?我有一个非常大的字符串向量,因此由于内存限制,无法在整个向量上使用stringdistmatrix计算距离矩阵。循环适用于大数据,但速度很慢。

2 个答案:

答案 0 :(得分:1)

stringdist有一个用于计算矩阵中所有距离的版本,所以我认为像这样的东西将是一个改进,它在我的计算机上运行时包含100个代表行的速度大约是其四倍:

d <- c("herb", "market", "merchandise", "fun", "casket93", "old", "herbb", "basket", "bottle", "plastic", "baskket", "markket", "pasword", "plastik", "oldg", "mahagony", "mahaagoni", "sim23", "asket", "trump" )
#d <- rep(d, each=100) #make it a bit longer for timing

d <-as.data.frame(d)
M <- nrow(d)
Dist <- data.frame(matrix(nrow=M, ncol=2))
colnames(Dist) <- c("string" ,"dist")
Dist$string <- d$d
d$sim <- character(length=M)

require(stringr)
require(stringdist)

ind_short <- grepl("[[:digit:]]", d[i, "d"], ignore.case=TRUE) == TRUE | str_count(d$d, "[[:alpha:]]") < 5

short <- stringdistmatrix(d$d[ind_short], d$d, method="lv", maxDist=0.000001)
long <- stringdistmatrix(d$d[!ind_short], d$d, method="lv", maxDist=3)

d$sim[ind_short] <- apply(short,1,function(x)paste(as.character(unlist(d$d[x<3])), collapse=", "))
d$sim[!ind_short] <- apply(long,1,function(x)paste(as.character(unlist(d$d[x<3])), collapse=", "))

基本策略是分为短组件和长组件,并使用stringdist的矩阵形式,然后使用粘贴折叠它们,并分配到d$sim

中的正确位置

编辑添加:根据您关于无法同时处理整个矩阵的评论,请尝试选择chunk_length,以便stringdistmatrix()适用于chunk_length*M矩阵。当然,如果你将它设置为1,那么你将恢复原来的非正式形式

chunk_length <- 100
ind_short <- grepl("[[:digit:]]", d[i, "d"], ignore.case=TRUE) == TRUE | str_count(d$d, "[[:alpha:]]") < 5
d$iter <- rep(1:M,each=chunk_length,length.out=M)

for (i in unique(d$iter))
{
  in_iter <- (d$iter == i)
  short <- stringdistmatrix(d$d[in_iter & ind_short], d$d, method="lv", maxDist=0.000001)
  long <- stringdistmatrix(d$d[in_iter & !ind_short], d$d, method="lv", maxDist=3)

  if(sum(in_iter & ind_short)==1) short <- t(short)
  if(sum(in_iter & !ind_short)==1) long <- t(long)

  if(sum(in_iter & ind_short)>0) d$sim[in_iter & ind_short] <- apply(short,1,function(x)paste(as.character(unlist(d$d[x<3])), collapse=", "))
  if(sum(in_iter & !ind_short)>0) d$sim[in_iter & !ind_short] <- apply(long,1,function(x)paste(as.character(unlist(d$d[x<3])), collapse=", "))
}

答案 1 :(得分:0)

这不是一个真正的答案,但我认为在这个项目中提及agrep可能对你有用可能是件好事。它做部分模式匹配。

> d <- c("herb", "market", "merchandise", "fun", "casket93", 
         "old", "herbb", "basket", "bottle", "plastic", "baskket",
         "markket", "pasword", "plastik", "oldg", "mahagony", 
         "mahaagoni", "sim23", "asket", "trump" )
> agr <- sapply(d, function(x) agrep(x, d, value = TRUE))
> head(agr)
$herb
[1] "herb"  "herbb"

$market
[1] "market"  "markket"

$merchandise
[1] "merchandise"

$fun
[1] "fun"

$casket93
[1] "casket93"

$old
[1] "old"     "pasword" "oldg"