我正在尝试使用scipy.optimize.curve_fit
来适应模型函数,但以下代码给出了以下错误:
from scipy.optimize import curve_fit
from math import log10
def my_func(x, alpha):
return [10*log10(alpha*y*y) for y in x]
known_x = [1039.885254, 2256.833008, 6428.667969, 30602.62891] #known x-values
known_y = [31.87999916, 33.63000107, 35, 36.74000168]
popt, pcov = curve_fit(my_func, known_x, known_y)
我得到的错误是:
TypeError: unsupported operand type(s) for -: 'list' and 'list'
我知道相关问题已被问及here和here,但我无法从这些答案中解决问题。
我仔细检查了curve_fit
发送到我的函数的参数的类型,我看到alpha
作为numpy.float64
和x
作为{{1}进来}}
感谢您的帮助。
以下是回溯错误:
list
以下是Traceback (most recent call last):
File "test.py", line 10, in <module>
popt, pcov = curve_fit(my_func, known_x, known_y)
File "/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/scipy/optimize/minpack.py", line 506, in curve_fit
res = leastsq(func, p0, args=args, full_output=1, **kw)
File "/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/scipy/optimize/minpack.py", line 348, in leastsq
m = _check_func('leastsq', 'func', func, x0, args, n)[0]
File "/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/scipy/optimize/minpack.py", line 14, in _check_func
res = atleast_1d(thefunc(*((x0[:numinputs],) + args)))
File "/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/scipy/optimize/minpack.py", line 418, in _general_function
return function(xdata, *params) - ydata
TypeError: unsupported operand type(s) for -: 'list' and 'list'
:
_general_function
答案 0 :(得分:4)
您需要将list
转换为np.array
:
def my_func(x, alpha):
return np.array([10*np.log10(alpha*y*y) for y in x])
known_x = np.array([1039.885254, 2256.833008, 6428.667969, 30602.62891]) #known x-values
known_y = np.array([31.87999916, 33.63000107, 35, 36.74000168])
结果:
(array([ 0.00012562]), array([[ 2.38452809e-08]]))
原因很明显,如此消息所示:
TypeError: unsupported operand type(s) for -: 'list' and 'list'
当然,list
无法减去list
。为此,我们需要它们位于numpy.array