我的网页就是这样 -
<p>
<strong class="offender">YOB:</strong> 1987<br />
<strong class="offender">RACE:</strong> WHITE<br />
<strong class="offender">GENDER:</strong> FEMALE<br />
<strong class="offender">HEIGHT:</strong> 5'05''<br />
<strong class="offender">WEIGHT:</strong> 118<br />
<strong class="offender">EYE COLOR:</strong> GREEN<br />
<strong class="offender">HAIR COLOR:</strong> BROWN<br />
</p>
我想为每个人提取信息并获取YOB:1987
,RACE:WHITE
等....
我尝试的是 -
subc = soup.findAll('p')
subc1 = subc[1]
subc2 = subc1.findAll('strong')
但这只给我YOB:
,RACE:
等
我是否有办法以YOB:1987
,RACE:WHITE
格式获取数据?
答案 0 :(得分:52)
只需遍历所有<strong>
代码,然后使用next_sibling
即可获得所需内容。像这样:
for strong_tag in soup.find_all('strong'):
print strong_tag.text, strong_tag.next_sibling
<强>演示:强>
>>> from bs4 import BeautifulSoup
>>> html = '''
... <p>
... <strong class="offender">YOB:</strong> 1987<br />
... <strong class="offender">RACE:</strong> WHITE<br />
... <strong class="offender">GENDER:</strong> FEMALE<br />
... <strong class="offender">HEIGHT:</strong> 5'05''<br />
... <strong class="offender">WEIGHT:</strong> 118<br />
... <strong class="offender">EYE COLOR:</strong> GREEN<br />
... <strong class="offender">HAIR COLOR:</strong> BROWN<br />
... </p>
... '''
>>> soup = BeautifulSoup(html)
>>> for strong_tag in soup.find_all('strong'):
... print strong_tag.text, strong_tag.next_sibling
这会给你:
YOB: 1987
RACE: WHITE
GENDER: FEMALE
HEIGHT: 5'05''
WEIGHT: 118
EYE COLOR: GREEN
HAIR COLOR: BROWN
答案 1 :(得分:23)
我认为你可以使用subc1.text
来获取它。
>>> html = """
<p>
<strong class="offender">YOB:</strong> 1987<br />
<strong class="offender">RACE:</strong> WHITE<br />
<strong class="offender">GENDER:</strong> FEMALE<br />
<strong class="offender">HEIGHT:</strong> 5'05''<br />
<strong class="offender">WEIGHT:</strong> 118<br />
<strong class="offender">EYE COLOR:</strong> GREEN<br />
<strong class="offender">HAIR COLOR:</strong> BROWN<br />
</p>
"""
>>> from bs4 import BeautifulSoup
>>> soup = BeautifulSoup(html)
>>> print soup.text
YOB: 1987
RACE: WHITE
GENDER: FEMALE
HEIGHT: 5'05''
WEIGHT: 118
EYE COLOR: GREEN
HAIR COLOR: BROWN
或者如果你想探索它,你可以使用.contents
:
>>> p = soup.find('p')
>>> from pprint import pprint
>>> pprint(p.contents)
[u'\n',
<strong class="offender">YOB:</strong>,
u' 1987',
<br/>,
u'\n',
<strong class="offender">RACE:</strong>,
u' WHITE',
<br/>,
u'\n',
<strong class="offender">GENDER:</strong>,
u' FEMALE',
<br/>,
u'\n',
<strong class="offender">HEIGHT:</strong>,
u" 5'05''",
<br/>,
u'\n',
<strong class="offender">WEIGHT:</strong>,
u' 118',
<br/>,
u'\n',
<strong class="offender">EYE COLOR:</strong>,
u' GREEN',
<br/>,
u'\n',
<strong class="offender">HAIR COLOR:</strong>,
u' BROWN',
<br/>,
u'\n']
并从列表中过滤掉必要的项目:
>>> data = dict(zip([x.text for x in p.contents[1::4]], [x.strip() for x in p.contents[2::4]]))
>>> pprint(data)
{u'EYE COLOR:': u'GREEN',
u'GENDER:': u'FEMALE',
u'HAIR COLOR:': u'BROWN',
u'HEIGHT:': u"5'05''",
u'RACE:': u'WHITE',
u'WEIGHT:': u'118',
u'YOB:': u'1987'}
答案 2 :(得分:0)
您可以尝试使用此内部findall for循环:
item_price = item.find('span', attrs={'class':'s-item__price'}).text
它仅提取文本并将其关联到“ item_pice”
答案 3 :(得分:0)
我认为您可以使用gazpacho中的.strip()
解决此问题:
输入:
html = """\
<p>
<strong class="offender">YOB:</strong> 1987<br />
<strong class="offender">RACE:</strong> WHITE<br />
<strong class="offender">GENDER:</strong> FEMALE<br />
<strong class="offender">HEIGHT:</strong> 5'05''<br />
<strong class="offender">WEIGHT:</strong> 118<br />
<strong class="offender">EYE COLOR:</strong> GREEN<br />
<strong class="offender">HAIR COLOR:</strong> BROWN<br />
</p>
"""
代码:
soup = Soup(html)
text = soup.find("p").strip(whitespace=False) # to keep \n characters intact
lines = [
line.strip()
for line in text.split("\n")
if line != ""
]
data = dict([line.split(": ") for line in lines])
输出:
print(data)
# {'YOB': '1987',
# 'RACE': 'WHITE',
# 'GENDER': 'FEMALE',
# 'HEIGHT': "5'05''",
# 'WEIGHT': '118',
# 'EYE COLOR': 'GREEN',
# 'HAIR COLOR': 'BROWN'}