我尝试通过java程序计算ELGAMAL生成密钥的执行时间,但我发现问题。
众所周知的是发电机g。最初,任何数字{0,...,n-1}
当尝试计算生成密钥的时间时,生成器密钥需要很长时间才能使用3072位作为素数? 我的算法如下所示
long start=System.nanoTime();
Random r = new Random();
BigInteger p =BigInteger.probablePrime(3072, r);
// Calculate a generator.
BigInteger g = getGenerator(p, r);
public static BigInteger getNextPrime(String ans) {
BigInteger one = new BigInteger("1");
BigInteger test = new BigInteger(ans);
while (!test.isProbablePrime(99))
test = test.add(one);
return test;
}
// Precondition - p is prime and it's reasonably small, say, no more than
// 5,000,000. If it's larger, this method will be quite
// time-consuming.
// Postcondition - if a generator for p can be found, then it is returned
// if no generator is found after 1000 tries, null is
// returned.
public static BigInteger getGenerator(BigInteger p, Random r) {
int numtries = 0;
// Try finding a generator at random 100 times.
while (numtries < 1000) {
// Here's what we're trying as the generator this time.
BigInteger rand = new BigInteger(p.bitCount()-1,r);
BigInteger exp = BigInteger.ONE;
BigInteger next = rand.mod(p);
// We exponentiate our generator until we get 1 mod p.
while (!next.equals(BigInteger.ONE)) {
next = (next.multiply(rand)).mod(p);
exp = exp.add(BigInteger.ONE);
}
// If the first time we hit 1 is the exponent p-1, then we have
// a generator.
if (exp.equals(p.subtract(BigInteger.ONE)))
return rand;
}
// None of the 1000 values we tried was a generator.
return null;
}
long elapse=System.nanoTime()-start;
关于我的问题的任何建议