如何使用我的数据在R中绘制Facets?

时间:2014-04-25 20:08:57

标签: r plot ggplot2 lattice

我有US state

的以下数据
d <- structure(list(Month = structure(c(5L, 4L, 9L, 1L, 8L, 7L, 6L, 
2L, 12L, 11L, 10L, 3L), .Label = c("01-Abr-14", "01-Ago-14", 
"01-Dez-14", "01-Fev-14", "01-Jan-14", "01-Jul-14", "01-Jun-14", 
"01-Mai-14", "01-Mar-14", "01-Nov-14", "01-Out-14", "01-Set-14"
), class = "factor"), Ada = c(0.1, 0.14, 0.25, -0.06, -0.15, 
0.3, 0.02, -0.01, 0.37, 0.08, 0.15, 0.17), Altus = c(0.06, 0.05, 
0.1, -0.17, -0.02, 0.25, -0.02, 0.08, 0, 0.02, 0.02, 0.02), Antlers = c(-0.08, 
0.02, 0.1, -0.38, -0.3, 0.27, -0.17, -0.1, 0.11, 0.11, 0.14, 
0), Ardmore = c(-0.01, 0.09, 0.18, -0.24, 0.02, 0.21, -0.13, 
-0.06, 0.18, 0.01, -0.02, 0.08), Bartlesville = c(-0.02, 0.09, 
0.2, 0.16, -0.07, 0.08, 0.01, 0.04, -0.01, 0.11, 0.11, 0.15), 
    Beaver = c(0.01, -0.02, 0.16, -0.08, -0.04, 0.07, 0.07, 0.07, 
    -0.12, 0.05, 0, 0.05), Boise.City = c(0.02, -0.05, 0.09, 
    -0.1, -0.24, 0.05, -0.01, 0.21, -0.01, -0.06, 0, 0.03), Buffalo = c(-0.04, 
    0, 0.15, -0.05, -0.15, 0.16, -0.11, 0.12, -0.2, 0.03, 0, 
    0.01), Carnegie = c(0.02, 0.06, 0.15, -0.16, 0.09, 0.24, 
    -0.03, 0.09, -0.16, 0.06, -0.01, 0), Cherokee = c(0.06, 0.1, 
    0.26, -0.1, -0.06, 0.2, 0.06, -0.06, -0.06, -0.11, 0, 0.08
    ), Claremore = c(-0.02, 0.22, 0.18, 0.12, -0.09, 0.11, 0.16, 
    0.04, 0.46, 0.16, 0.25, 0.17), Durant = c(0.06, 0.05, 0.15, 
    -0.11, -0.12, 0.35, -0.21, 0, 0.4, 0.04, 0.26, 0.09), Enid = c(0.07, 
    0.08, 0.34, 0, 0.18, 0.34, 0.11, 0.09, -0.04, 0.17, 0.13, 
    0.1), Erick = c(0.05, 0.06, 0.14, -0.15, -0.09, 0.07, -0.05, 
    0.13, 0.01, -0.02, 0.04, 0.02), Geary = c(-0.01, 0.01, 0.15, 
    -0.19, -0.09, 0.14, -0.18, 0.14, 0.02, 0.05, -0.07, 0), Goodwell = c(0, 
    -0.05, 0.08, -0.08, -0.01, 0, -0.06, 0.03, -0.12, 0.02, -0.03, 
    0), Guthrie = c(0.06, 0.13, 0.23, -0.09, 0.06, 0.31, -0.03, 
    0.05, -0.01, 0.03, 0.09, 0.11), Hammon = c(0.02, 0.03, 0.14, 
    -0.2, -0.04, 0.1, -0.1, 0.23, -0.07, 0.05, 0.03, 0.03), Hennessey = c(0.02, 
    0.09, 0.22, -0.04, 0.1, 0.22, 0.13, 0.2, 0.08, -0.01, 0.03, 
    0.07), Hobartmuni = c(-0.03, -0.02, 0.1, -0.17, -0.29, -0.08, 
    0.02, 0.04, -0.05, -0.03, 0, 0), Holdenville = c(-0.04, 0.12, 
    0.26, 0.05, -0.16, 0.23, 0.04, 0.01, 0.27, 0.13, 0.12, 0.07
    ), Hooker = c(0.03, -0.03, 0.07, -0.08, -0.17, 0.01, -0.03, 
    -0.05, -0.14, -0.02, 0, 0.04), Jefferson = c(0.04, 0.05, 
    0.29, 0.09, 0.05, 0.21, 0.11, 0.07, -0.03, 0.05, 0.09, 0.08
    ), Kenton = c(0.02, -0.06, 0.05, -0.12, -0.15, 0, 0.27, 0.17, 
    -0.01, -0.04, -0.02, -0.01), Kingfisher = c(0.05, 0.09, 0.18, 
    -0.02, 0.19, 0.21, -0.03, 0.19, 0.1, -0.01, 0.02, 0.11), 
    Lawton = c(0.03, 0.06, 0.06, -0.17, -0.39, 0.11, -0.1, 0.06, 
    0, 0.06, 0.03, 0.03), Mangum = c(0.01, 0, 0.05, -0.31, -0.27, 
    0.13, 0.01, -0.01, -0.01, 0, 0, 0.01), Meeker = c(-0.03, 
    0.14, 0.22, -0.15, -0.03, 0.34, 0.05, -0.03, 0.22, 0.14, 
    0.02, 0.06), Miami = c(-0.03, 0.03, 0.17, 0.12, 0.15, -0.11, 
    -0.15, -0.29, 0.34, 0.11, 0.25, 0.09), Muskogee = c(0.08, 
    0.12, 0.14, -0.04, 0.27, 0.16, -0.09, -0.07, 0.36, -0.02, 
    0.23, 0.14), Mutual = c(0.04, 0.05, 0.16, -0.05, 0.2, 0.16, 
    0.06, -0.04, -0.1, 0.02, 0, 0.08), Newkirk = c(-0.04, 0.06, 
    0.19, 0.13, -0.09, 0.15, 0.24, -0.01, -0.1, 0.21, 0, 0.1), 
    Okeene = c(0.09, 0.19, 0.12, 0.06, 0.02, 0.41, 0.03, 0.03, 
    0.37, 0.08, 0.13, 0.17), Okemah = c(0, 0.04, 0.2, -0.08, 
    0.04, 0.12, 0.05, 0.04, -0.01, 0.1, 0, 0.06), Okmulgee = c(0.04, 
    0.21, 0.17, -0.02, 0.01, 0.23, 0.03, 0.06, 0.17, 0, 0.29, 
    0.1), Pauls_valley = c(0.17, 0.17, 0.36, -0.02, -0.11, 0.27, 
    -0.12, 0.06, 0.27, 0.22, 0.13, 0.21), Pawhuska = c(0.05, 
    0.11, 0.3, 0.29, 0.19, 0.13, 0.2, -0.02, 0.1, 0.12, 0.2, 
    0.15), Perry = c(0.04, 0.13, 0.25, -0.15, -0.06, 0.02, 0.2, 
    -0.15, -0.05, 0, -0.04, 0.07), Poteau = c(-0.03, 0.05, 0.21, 
    -0.11, -0.01, -0.07, -0.11, -0.15, 0.37, 0.39, 0.25, 0.2), 
    Stillwater = c(0.04, 0.12, 0.16, -0.2, -0.04, 0.2, 0.1, -0.01, 
    0.02, 0, 0, 0.05), Tahlequah = c(0.09, 0.17, 0.27, -0.02, 
    0.48, 0.06, 0.28, 0.05, 0.38, 0.11, 0.4, 0.21), Waurika = c(0.07, 
    0.04, 0.16, -0.09, -0.12, 0.08, -0.22, -0.01, 0.09, 0.09, 
    -0.03, 0.02), Weatherford = c(0.03, 0.05, 0.23, -0.24, -0.06, 
    0.25, -0.11, 0.3, -0.1, 0.04, -0.03, 0.01), Webbersfalls = c(-0.04, 
    0.1, 0.16, -0.09, 0.09, -0.01, -0.25, -0.18, 0.39, 0.01, 
    0.3, 0.11)), .Names = c("Month", "Ada", "Altus", "Antlers", 
"Ardmore", "Bartlesville", "Beaver", "Boise.City", "Buffalo", 
"Carnegie", "Cherokee", "Claremore", "Durant", "Enid", "Erick", 
"Geary", "Goodwell", "Guthrie", "Hammon", "Hennessey", "Hobartmuni", 
"Holdenville", "Hooker", "Jefferson", "Kenton", "Kingfisher", 
"Lawton", "Mangum", "Meeker", "Miami", "Muskogee", "Mutual", 
"Newkirk", "Okeene", "Okemah", "Okmulgee", "Pauls_valley", "Pawhuska", 
"Perry", "Poteau", "Stillwater", "Tahlequah", "Waurika", "Weatherford", 
"Webbersfalls"), class = "data.frame", row.names = c(NA, -12L
))
每个要映射的地方的

坐标

coords <- structure(list(place = structure(c(2L, 3L, 4L, 5L, 6L, 7L, 8L, 
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 
22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 
35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 1L, 44L), .Label = c(" Weatherford", 
"Ada", "Altus", "Antlers", "Ardmore", "Bartlesville", "Beaver", 
"Boise City", "Buffalo", "Carnegie", "Cherokee", "Claremore", 
"Durant", "Enid", "Erick", "Geary", "Goodwell", "Guthrie", "Hammon", 
"Hennessey", "Hobartmuni", "Holdenville", "Hooker", "Jefferson", 
"Kenton", "Kingfisher", "Lawton", "Mangum", "Meeker", "Miami", 
"Muskogee", "Mutual", "Newkirk", "Okeene", "Okemah", "Okmulgee", 
"Pauls_valley", "Pawhuska", "Perry", "Poteau", "Stillwater", 
"Tahlequah", "Waurika", "Webbersfalls"), class = "factor"), Lat = c(34.7864, 
34.5903, 34.2208, 34.1714, 36.7683, 36.8125, 36.7236, 36.8003, 
35.1756, 36.7747, 36.3225, 34.0003, 36.4194, 35.2164, 35.6267, 
36.5914, 35.8161, 35.585, 36.0942, 34.9894, 35.0567, 36.8589, 
36.7222, 36.9031, 35.8583, 34.6097, 34.8911, 35.505, 36.8833, 
35.7781, 36.2283, 36.8914, 36.1217, 35.4253, 35.6239, 34.7253, 
36.6692, 36.2886, 35.0539, 36.1175, 35.9369, 34.1747, 35.52, 
35.4814), Long = c(-96.685, -99.3344, -95.615, -97.1294, -96.0261, 
-100.5308, -102.4806, -99.6403, -98.5794, -98.3583, -95.5808, 
-96.3686, -97.8747, -99.8628, -98.3225, -101.6181, -97.395, -99.3953, 
-97.835, -99.0525, -96.3861, -101.2172, -97.7903, -102.965, -97.9294, 
-98.4572, -99.5017, -96.9767, -94.8833, -95.3339, -99.17, -97.0586, 
-98.315, -96.3033, -96.025, -97.2814, -96.3472, -97.2897, -94.6264, 
-97.095, -94.9644, -97.9964, -98.6986, -95.2039)), .Names = c("place", 
"Lat", "Long"), class = "data.frame", row.names = c(NA, -44L))

所以基本上我想取值,找出哪一个是正面的,哪一个是负面的,并绘制如下图。

  • +, - 和零
  • 会有三种不同的代码
  • 12个方面12个月

我有44个位置的纬度/长度,所以我可以在状态图上绘制它们。

如何使用ggplot2执行此操作?或其他一些实用工具。

enter image description here

到目前为止,我已使用以下代码绘制了点数

ggplot() + 
  geom_polygon(data=m, aes(x=long, y=lat,group=group),colour="black", fill="white" )+
  geom_point(data=stations,aes(x=long,y=lat),,colour="red",)+
  size=0.5,hjust=0,alpha=.5),size=3)+
  xlab('Longitude')+
  ylab('Latitude')+
  coord_fixed()

enter image description here

2 个答案:

答案 0 :(得分:3)

试试这个

负载不足,必要时下载

kpacks <- c('raster', 'ggplot2', 'reshape2', 'lubridate')
new.packs <- kpacks[!(kpacks %in% installed.packages()[,"Package"])]
if(length(new.packs)) install.packages(new.packs)
lapply(kpacks, require, character.only=T)
remove(kpacks, new.packs)

d <- read.table(text=readClipboard(), sep = '\t', header=TRUE)
# or copy and paste the data from above
coords <- read.table(text=readClipboard(), sep = '\t', header=TRUE, quote = '')
# or copy and paste the data from above
#coordinates(coords) <- ~Long+Lat #not necessary for this approach

从GADM获取数据

usa <- raster::getData(country = 'USA', level = 1)
okl <- usa[usa@data$NAME_1 == 'Oklahoma', ]
#plot(okl)
#plot(coords, add = T, cols = d)

d1 <- melt(d) # reshape it
d1$Month <- lubridate::dmy(d1$Month) # I've used abrev names in Portuguese. Change accordingly

创建一个因子变量,其中level = positive / zero / negative

d1$val <- cut(d1$value, breaks= c(min(d1$value), 0.00, 0.001, max(d1$value)),
              labels = c('negative', 'zero', 'positive'),
              right = F, include.lowest = T, dig.lab = 3)

d2 <- merge(d1, coords, by.x = 'variable', by.y = 'place', all.x = T)
head(d2)
  variable Month value      val     Lat    Long
1      Ada   Jul  0.02 positive 34.7864 -96.685
2      Ada   May -0.15 negative 34.7864 -96.685
3      Ada   Jun  0.30 positive 34.7864 -96.685
4      Ada   Jan  0.10 positive 34.7864 -96.685
5      Ada   Feb  0.14 positive 34.7864 -96.685
6      Ada   Mar  0.25 positive 34.7864 -96.685

okl_df <- fortify(okl) # spdf to data.frame
head(okl_df)
       long      lat order  hole piece group id
1 -95.52363 37.00093     1 FALSE     1  36.1 36
2 -95.40672 37.00047     2 FALSE     1  36.1 36
3 -95.40027 37.00053     3 FALSE     1  36.1 36
4 -95.07227 36.99872     4 FALSE     1  36.1 36
5 -95.03362 36.99859     5 FALSE     1  36.1 36
6 -95.03309 36.99920     6 FALSE     1  36.1 36

p <- ggplot(data = okl_df, aes(x = long, y = lat, group = group)) + 
  geom_polygon(fill = NA, colour = 'black') +
  geom_point(inherit.aes = F, data = d2, aes(x=Long, y = Lat, colour = val)) + 
  facet_wrap(~ Month, ncol = 3) +
  theme_minimal() +
  coord_map()+
  scale_colour_manual('class', values = c('negative'= 'grey80', 'zero' = 'grey60',
                                          'positive' = 'black'))
p

minimal plot

修改

要将变量映射到形状而不是颜色,可以将其映射到美学

p1 <- ggplot(data = okl_df, aes(x = long, y = lat, group = group)) + 
  geom_polygon(fill = NA, colour = 'black') +
  geom_point(inherit.aes = F, data = d2, aes(x=Long, y = Lat, shape = val)) + 
  facet_wrap(~ Month, ncol = 3) +
  theme_minimal() +
  coord_map()
p1

shape aesthetic

或者将颜色和形状都映射到美学

p2 <- ggplot(data = okl_df, aes(x = long, y = lat, group = group)) + 
  geom_polygon(fill = NA, colour = 'black') +
  geom_point(inherit.aes = F, data = d2, aes(x=Long, y = Lat, colour = val,
             shape = val)) + 
  facet_wrap(~ Month, ncol = 3) +
  theme_minimal() +
  coord_map()
p2

plot2 mapping two aesthetics

您可以将其导出为png,需要操纵分辨率

ggsave(file = file.path(tempdir(),'map1.png'),
       p
       , width=16, height=16, units = "cm", dpi = 150
)

答案 1 :(得分:0)

在绘图代码的末尾添加facet_wrap(~ month)facet_grid(month ~ .)。您还可以在facet_wrap中指定列数:facet_wrap(~ month, ncol = 3)

我重新安排了您的数据:

  1. 转置数据
  2. 将第一列命名为place
  3. 结果数据框:

    oklahoma <- structure(list(place = structure(1:44, .Label = c("Ada", "Altus", "Antlers", "Ardmore", "Bartlesville", "Beaver", "Boise City", "Buffalo", "Carnegie", "Cherokee", "Claremore", "Durant", "Enid", "Erick", "Geary", "Goodwell", "Guthrie", "Hammon", "Hennessey", "Hobartmuni", "Holdenville", "Hooker", "Jefferson", "Kenton", "Kingfisher", "Lawton", "Mangum", "Meeker", "Miami", "Muskogee", "Mutual", "Newkirk", "Okeene", "Okemah", "Okmulgee", "Pauls valley", "Pawhuska", "Perry", "Poteau", "Stillwater", "Tahlequah", "Waurika", "Weatherford", "Webbersfalls"), class = "factor"), Jan = structure(c(16L, 12L, 5L, 1L, 2L, 7L, 8L, 4L, 8L, 12L, 2L, 12L, 16L, 11L, 1L, 6L, 12L, 8L, 8L, 3L, 4L, 9L, 10L, 8L, 11L, 9L, 7L, 3L, 3L, 14L, 10L, 4L, 15L, 6L, 10L, 17L, 11L, 10L, 3L, 10L, 15L, 13L, 9L, 4L), .Label = c("-0,01", "-0,02", "-0,03", "-0,04", "-0,08", "0", "0,01", "0,02", "0,03", "0,04", "0,05", "0,06", "0,07", "0,08", "0,09", "0,1", "0,17"), class = "factor"), Feb = structure(c(17L, 10L, 7L, 12L, 12L, 1L, 3L, 5L, 11L, 13L, 21L, 10L, 13L, 11L, 6L, 3L, 16L, 8L, 12L, 1L, 15L, 2L, 10L, 4L, 12L, 11L, 5L, 17L, 8L, 15L, 10L, 11L, 19L, 9L, 20L, 18L, 14L, 16L, 10L, 15L, 18L, 9L, 10L, 13L), .Label = c("-0,02", "-0,03", "-0,05", "-0,06", "0", "0,01", "0,02", "0,03", "0,04", "0,05", "0,06", "0,09", "0,1", "0,11", "0,12", "0,13", "0,14", "0,17", "0,19", "0,21", "0,22"), class = "factor"), Mar = structure(c(18L, 6L, 6L, 12L, 14L, 10L, 5L, 9L, 9L, 19L, 12L, 9L, 22L, 8L, 9L, 4L, 17L, 8L, 16L, 6L, 19L, 3L, 21L, 1L, 12L, 2L, 1L, 16L, 11L, 8L, 10L, 13L, 7L, 14L, 11L, 23L, 22L, 18L, 15L, 10L, 20L, 10L, 17L, 10L), .Label = c("0,05", "0,06", "0,07", "0,08", "0,09", "0,1", "0,12", "0,14", "0,15", "0,16", "0,17", "0,18", "0,19", "0,2", "0,21", "0,22", "0,23", "0,25", "0,26", "0,27", "0,29", "0,3", "0,36"), class = "factor"), Apr = structure(c(4L, 14L, 17L, 15L, 24L, 5L, 7L, 3L, 11L, 7L, 22L, 8L, 18L, 14L, 13L, 5L, 6L, 14L, 2L, 12L, 19L, 5L, 21L, 9L, 1L, 12L, 16L, 10L, 22L, 2L, 3L, 23L, 20L, 5L, 1L, 1L, 25L, 14L, 8L, 14L, 1L, 6L, 15L, 6L), .Label = c("-0,02", "-0,04", "-0,05", "-0,06", "-0,08", "-0,09", "-0,1", "-0,11", "-0,12", "-0,15", "-0,16", "-0,17", "-0,19", "-0,2", "-0,24", "-0,31", "-0,38", "0", "0,05", "0,06", "0,09", "0,12", "0,13", "0,16", "0,29"), class = "factor"), May = structure(c(10L, 18L, 16L, 20L, 5L, 3L, 13L, 10L, 24L, 4L, 6L, 9L, 28L, 7L, 6L, 1L, 23L, 3L, 25L, 15L, 11L, 12L, 22L, 10L, 27L, 17L, 14L, 2L, 26L, 29L, 28L, 6L, 20L, 21L, 19L, 8L, 27L, 7L, 1L, 3L, 30L, 9L, 4L, 24L), .Label = c("-0,01", "-0,03", "-0,04", "-0,06", "-0,07", "-0,09", "-0,1", "-0,11", "-0,12", "-0,15", "-0,16", "-0,17", "-0,24", "-0,27", "-0,29", "-0,3", "-0,39", "0", "0,01", "0,02", "0,04", "0,05", "0,06", "0,09", "0,1", "0,15", "0,19", "0,2", "0,27", "0,48"), class = "factor"), Jun = structure(c(26L, 24L, 25L, 20L, 11L, 10L, 8L, 18L, 23L, 19L, 13L, 29L, 26L, 10L, 16L, 5L, 27L, 12L, 21L, 3L, 22L, 6L, 20L, 5L, 20L, 13L, 15L, 28L, 4L, 18L, 18L, 17L, 30L, 14L, 22L, 25L, 15L, 7L, 2L, 19L, 9L, 11L, 24L, 1L), .Label = c("-0,01", "-0,07", "-0,08", "-0,11", "0", "0,01", "0,02", "0,05", "0,06", "0,07", "0,08", "0,1", "0,11", "0,12", "0,13", "0,14", "0,15", "0,16", "0,2", "0,21", "0,22", "0,23", "0,24", "0,25", "0,27", "0,3", "0,31", "0,34", "0,35", "0,41"), class = "factor"), Jul = structure(c(17L, 15L, 10L, 8L, 16L, 22L, 1L, 6L, 2L, 21L, 26L, 12L, 23L, 5L, 11L, 3L, 2L, 5L, 25L, 17L, 19L, 2L, 24L, 29L, 2L, 5L, 16L, 20L, 9L, 4L, 21L, 28L, 18L, 20L, 18L, 7L, 27L, 27L, 6L, 23L, 30L, 13L, 6L, 14L), .Label = c("-0,01", "-0,03", "-0,06", "-0,09", "-0,1", "-0,11", "-0,12", "-0,13",     "-0,15", "-0,17", "-0,18", "-0,21", "-0,22", "-0,25", "0", "0,01", "0,02", "0,03", "0,04", "0,05", "0,06", "0,07", "0,1", "0,11", "0,13", "0,16", "0,2", "0,24", "0,27", "0,28"), class = "factor"),     Aug = structure(c(1L, 20L, 8L, 6L, 16L, 19L, 29L, 23L, 21L, 6L, 16L, 13L, 22L, 24L, 25L, 15L, 17L, 30L, 28L, 16L, 14L, 5L, 19L, 26L, 27L, 18L, 1L, 3L, 12L, 7L, 4L, 1L, 15L, 16L, 18L, 18L, 2L, 11L, 9L, 1L, 17L, 1L, 31L, 10L), .Label = c("-0,01", "-0,02", "-0,03", "-0,04", "-0,05", "-0,06", "-0,07", "-0,1", "-0,15", "-0,18", "-0,2", "-0,29", "0", "0,01", "0,03", "0,04", "0,05", "0,06", "0,07", "0,08", "0,09", "0,1", "0,12", "0,13", "0,14", "0,17", "0,19", "0,2", "0,21", "0,23", "0,3"), class = "factor"), Sep = structure(c(24L, 11L, 17L, 19L, 1L, 7L, 1L, 10L, 9L, 4L, 28L, 27L, 11L, 12L, 13L, 7L, 1L, 5L, 14L, 3L, 21L, 8L, 2L, 1L, 16L, 11L, 1L, 20L, 22L, 23L, 6L, 6L, 24L, 1L, 18L, 21L, 16L, 6L, 24L, 13L, 25L, 15L, 6L, 26L), .Label = c("-0,01", "-0,03", "-0,05", "-0,06", "-0,07", "-0,1", "-0,12", "-0,14", "-0,16", "-0,2", "0", "0,01", "0,02", "0,08", "0,09", "0,1", "0,11", "0,17", "0,18", "0,22", "0,27", "0,34", "0,36", "0,37", "0,38", "0,39", "0,4", "0,46"), class = "factor"), Oct = structure(c(14L, 9L, 17L, 8L, 17L, 12L, 5L, 10L, 13L, 6L, 21L, 11L, 22L, 7L, 12L, 9L, 10L, 12L, 1L, 3L, 19L, 2L, 12L, 4L, 1L, 13L, 7L, 20L, 17L, 2L, 9L, 23L, 14L, 16L, 7L, 24L, 18L, 7L, 25L, 7L, 17L, 15L, 11L, 8L), .Label = c("-0,01", "-0,02", "-0,03", "-0,04", "-0,06", "-0,11", "0", "0,01", "0,02", "0,03", "0,04", "0,05", "0,06", "0,08", "0,09", "0,1", "0,11", "0,12", "0,13", "0,14", "0,16", "0,2", "0,21", "0,22", "0,39"), class = "factor"), Nov = structure(c(15L, 6L, 14L, 2L, 11L, 5L, 5L, 5L, 1L,  5L, 18L, 19L, 10L, 8L, 4L, 3L, 9L, 7L, 7L, 5L, 12L, 5L, 9L, 2L, 6L, 7L, 5L, 6L, 18L, 17L, 5L, 5L, 13L, 5L, 20L, 13L, 16L, 5L, 18L, 5L, 22L, 3L, 3L, 21L), .Label = c("-0,01", "-0,02", "-0,03", "-0,07", "0", "0,02", "0,03", "0,04", "0,09", "0,1", "0,11", "0,12", "0,13", "0,14", "0,15", "0,2", "0,23",    "0,25", "0,26", "0,29", "0,3", "0,4"), class = "factor"), Dec = structure(c(16L, 4L, 2L, 10L, 15L, 7L, 5L, 3L, 2L, 10L, 16L, 11L, 12L, 4L, 2L, 2L, 13L, 5L, 9L, 2L, 9L, 6L, 10L, 1L, 13L, 5L, 3L, 8L, 11L, 14L, 10L, 12L, 16L, 8L, 12L, 18L, 15L, 9L, 17L, 7L, 18L, 4L, 3L, 13L), .Label = c("-0,01", "0", "0,01", "0,02", "0,03", "0,04", "0,05", "0,06", "0,07", "0,08", "0,09", "0,1", "0,11", "0,14", "0,15", "0,17", "0,2", "0,21"), class = "factor"), Lat = structure(c(8L, 5L, 4L, 2L, 37L, 40L, 36L, 39L, 13L, 38L, 32L, 1L, 26L, 14L, 21L, 33L, 23L, 19L, 27L, 10L, 12L, 41L, 35L, 44L, 24L, 6L, 9L, 17L, 42L, 22L, 30L, 43L, 29L, 15L, 20L, 7L, 34L, 31L, 11L, 28L, 25L, 3L, 18L, 16L), .Label = c("34", "34,1714", "34,1747", "34,221", "34,6", "34,61", "34,7253", "34,786", "34,8911", "34,9894", "35,054", "35,0567", "35,1756", "35,2", "35,4253", "35,4814", "35,505", "35,52", "35,585", "35,6239", "35,63", "35,7781", "35,816", "35,8583", "35,9369", "36", "36,0942", "36,1175", "36,122", "36,228", "36,3", "36,3225", "36,5914", "36,6692", "36,7222", "36,7236", "36,7683", "36,7747", "36,8", "36,813", "36,859", "36,88", "36,8914", "36,903"), class = "factor"), Long = structure(c(20L, 39L, 13L, 25L, 15L, 2L, 5L, 44L, 37L, 35L, 12L, 18L, 32L, 1L, 33L, 4L, 27L, 42L, 29L, 40L, 19L, 3L, 28L, 6L, 30L, 36L, 43L, 21L, 8L, 11L, 41L, 23L, 34L, 16L, 14L, 26L, 17L, 22L, 7L, 24L, 9L, 31L, 38L, 10L), .Label = c("-100", "-100,5", "-101,2", "-101,618", "-102,481", "-103", "-94,63", "-94,9", "-94,9644", "-95,2039", "-95,3339", "-95,5808", "-95,62", "-96,025", "-96,0261", "-96,303", "-96,3472", "-96,37", "-96,3861", "-96,69", "-96,98", "-97", "-97,059", "-97,095", "-97,129", "-97,2814", "-97,4", "-97,7903", "-97,835", "-97,9294", "-97,996", "-98", "-98,3", "-98,32", "-98,3583", "-98,46", "-98,579", "-98,6986", "-99", "-99,0525", "-99,17", "-99,3953", "-99,502", "-99,64"), class = "factor")), .Names = c("place", "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", "Lat", "Long"), class = "data.frame", row.names = c(NA, -44L))
    

    之后重塑数据帧:

    require(reshape2)
    stations <- melt(oklahoma, id=c("place","Lat","Long"))
    stations$value <- gsub(',', '.', stations$value)
    stations$value <- as.numeric(stations$value)
    

    创建情节:

    ggplot() + 
      # geom_polygon(data=m, aes(x=Long, y=Lat,group=group), colour="black", fill="white") +
      geom_point(data=stations, aes(x=Long,y=Lat), colour="red")+
      xlab('Longitude') +
      ylab('Latitude') +
      coord_fixed() +
      facet_wrap(~ variable, ncol = 3)
    

    正如您所看到的,我评论了geom_polygon因为我没有这些数据。