我一直试图在通常的假设下验证OLS估算器是否一致。
请问您如何从线性模型中生成一些观察结果,以便之后我可以对该数据进行回归并希望验证OLS的理想属性?
提前谢谢你,
答案 0 :(得分:1)
不清楚这是否是你想要的?
# sample data: x1 and x2 uncorrelated
df <- data.frame(x1=sample(1:100,100),x2=sample(1:100,100))
# y = 1 +2.5*x1 - 3.2*x2 + N(0,5)
df$y <- with(df,1 + 2.5*x1 -3.2*x2 + rnorm(100,0,5))
fit <- lm(y~x1+x2, data=df)
summary(fit)
#...
# Residuals:
# Min 1Q Median 3Q Max
# -9.8951 -2.6056 -0.4384 3.6082 9.5044
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 1.954 1.263 1.548 0.125
# x1 2.516 0.016 157.257 <2e-16 ***
# x2 -3.237 0.016 -202.306 <2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# Residual standard error: 4.611 on 97 degrees of freedom
# Multiple R-squared: 0.9986, Adjusted R-squared: 0.9986
# F-statistic: 3.48e+04 on 2 and 97 DF, p-value: < 2.2e-16
请注意,se~4.6同意&#34; true&#34; se = 5.另请注意,(截距)估计不佳,因为se(y | x)= 5。
par(mfrow=c(2,2))
plot(fit)
请注意,Q-Q图确认了正常性。