我有以下代码。原则上,它需要2 ^ 6 * 1000 = 64000次迭代,这是非常小的数字。但是我的计算机需要9秒才能运行它至少n = 15。
from __future__ import division
import numpy as np
import itertools
n=6
iters = 1000
firstzero = 0
bothzero = 0
for S in itertools.product([-1,1], repeat = n+1):
for i in xrange(iters):
F = np.random.choice(np.array([-1,0,0,1], dtype=np.int8), size = n)
while np.all(F ==0):
F = np.random.choice(np.array([-1,0,0,1], dtype=np.int8), size = n)
FS = np.convolve(F,S, 'valid')
if (FS[0] == 0):
firstzero += 1
if np.all(FS==0):
bothzero += 1
print "firstzero", firstzero
print "bothzero", bothzero
是否有可能加快这一速度,还是应该用C语言重写?
分析表明它花费大部分时间在
258003 0.418 0.000 3.058 0.000 fromnumeric.py:1842(all)
130003 1.245 0.000 2.907 0.000 {method 'choice' of 'mtrand.RandomState' objects}
388006 2.488 0.000 2.488 0.000 {method 'reduce' of 'numpy.ufunc' objects}
128000 0.731 0.000 2.215 0.000 numeric.py:873(convolve)
258003 0.255 0.000 2.015 0.000 {method 'all' of 'numpy.ndarray' objects}
258003 0.301 0.000 1.760 0.000 _methods.py:35(_all)
130003 0.470 0.000 1.663 0.000 fromnumeric.py:2249(prod)
644044 1.483 0.000 1.483 0.000 {numpy.core.multiarray.array}
130003 0.164 0.000 1.193 0.000 _methods.py:27(_prod)
258003 0.283 0.000 0.624 0.000 numeric.py:462(asanyarray)
答案 0 :(得分:9)
几乎完全矢量化的代码版本要快得多(16.9%),假设你的代码名为f()
:
def g():
n=6
iters = 1000
S=np.repeat(list(itertools.product([-1,1], repeat = n+1)),iters, axis=0).reshape((-1,n+1))
F=np.random.choice(np.array([-1,0,0,1], dtype=np.int8), size = (iters*(2**(n+2)),n)) #oversampling
F=F[~(F==0).all(1)][:iters*(2**(n+1))]
FS=np.asanyarray(map(lambda x, y: np.convolve(x, y, 'valid'), F, S))
firstzero=(FS[:,0]==0).sum()
bothzero=(FS==0).all(1).sum()
print "firstzero", firstzero
print "bothzero", bothzero
时间结果:
In [164]:
%timeit f()
firstzero 27171
bothzero 12151
firstzero 27206
bothzero 12024
firstzero 27272
bothzero 12135
firstzero 27173
bothzero 12079
1 loops, best of 3: 14.6 s per loop
In [165]:
%timeit g()
firstzero 27182
bothzero 11952
firstzero 27365
bothzero 12174
firstzero 27318
bothzero 12173
firstzero 27377
bothzero 12072
1 loops, best of 3: 2.47 s per loop
答案 1 :(得分:3)
通过一次性生成所有随机选项,我很容易获得35-40%的加速:
for S in itertools.product([-1,1], repeat = n+1):
Fx = np.random.choice(np.array([-1,0,0,1], dtype=np.int8), size=(iters,n))
for F in Fx:
取代for i in xrange(iters)
循环。
为了超越这个范围,我怀疑你可以使用scipy.signal.fftconvolve对卷积本身进行矢量化(np.convolve只支持1D输入)。我没有尝试这个,部分是因为我写这篇文章时scipy.org处于脱机状态,但我希望这能让你继续下去。主要思想是减少你在Python中做的循环,尽可能用矢量化操作替换它们。