Golang自定义排序比本机排序更快

时间:2014-04-24 17:59:39

标签: sorting go native qsort

我刚刚在golang中进行排序,我在stackoverflow上找到了一个qsort函数。它的运行速度似乎是golang中本机排序函数的两倍。我尝试过不同的输入尺寸并测试它是否有效。

有人能解释为什么会这样吗?

以下是您可以在电脑上测试的代码:

package main

import (
    "fmt"
    "math/rand"
    "sort"
    "time"
)

func qsort(a []int) []int {
    if len(a) < 2 {
        return a
    }

    left, right := 0, len(a)-1

    // Pick a pivot
    pivotIndex := rand.Int() % len(a)

    // Move the pivot to the right
    a[pivotIndex], a[right] = a[right], a[pivotIndex]

    // Pile elements smaller than the pivot on the left
    for i := range a {
        if a[i] < a[right] {
            a[i], a[left] = a[left], a[i]
            left++
        }
    }

    // Place the pivot after the last smaller element
    a[left], a[right] = a[right], a[left]

    // Go down the rabbit hole
    qsort(a[:left])
    qsort(a[left+1:])

    return a
}

func main() {
    // Create an array with random integers
    rand.Seed(30)
    size := 1000000
    array1 := make([]int, size)
    start := time.Now()

    for i, _ := range array1 {
        array1[i] = rand.Int()
    }

    fmt.Println("Creating array with ", size, " elements...")
    fmt.Println("--- ", time.Since(start), " ---")
    // Create a copy of the unsorted array
    array2 := make([]int, size)
    copy(array2, array1)

    // Short using native function
    start = time.Now()
    sort.Ints(array1)

    fmt.Println("Sorting with the native sort...")
    fmt.Println("--- ", time.Since(start), " ---")

    // Sort using custom qsort
    start = time.Now()
    qsort(array2)

    fmt.Println("Sorting with custom qsort...")
    fmt.Println("--- ", time.Since(start), " ---")

}

1 个答案:

答案 0 :(得分:11)

差异似乎主要是因为你的Quicksort使用内置函数。它切片并使用len。请注意,sort.Sort需要sort.Interface。因此,每次拨打len时,都会调用slice.Len,每次执行array[i],array[j] = array[j],array[i]时,都必须拨打Swap(i,j)

我写了一个适用于任意qsort.Interface的可比较版本:

func Qsort(a Interface, prng *rand.Rand) Interface {
    if a.Len() < 2 {
        return a
    }

    left, right := 0, a.Len()-1

    // Pick a pivot
    pivotIndex := prng.Int() % a.Len()
    // Move the pivot to the right
    a.Swap(pivotIndex, right)

    // Pile elements smaller than the pivot on the left
    for i := 0; i < a.Len(); i++ {
        if a.Less(i, right) {

            a.Swap(i, left)
            left++
        }
    }

    // Place the pivot after the last smaller element
    a.Swap(left, right)

    // Go down the rabbit hole
    leftSide, rightSide := a.Partition(left)
    Qsort(leftSide, prng)
    Qsort(rightSide, prng)

    return a
}

然后我使用了Go's benchmark functionality(在可能的情况下,你应该总是使用基准)。

为了参考和透明度,qsort.Interface定义为:

type Interface interface {
    sort.Interface
    // Partition returns slice[:i] and slice[i+1:]
    // These should references the original memory
    // since this does an in-place sort
    Partition(i int) (left Interface, right Interface)
}

IntSlice的实际qsort实施是:

type IntSlice []int

func (is IntSlice) Less(i, j int) bool {
    return is[i] < is[j]
}

func (is IntSlice) Swap(i, j int) {
    is[i], is[j] = is[j], is[i]
}

func (is IntSlice) Len() int {
    return len(is)
}

func (is IntSlice) Partition(i int) (left Interface, right Interface) {
    return IntSlice(is[:i]), IntSlice(is[i+1:])
}

最后,这里是qsort_test.go文件:

package qsort_test

import (
    "math/rand"
    "qsort"
    "sort"
    "testing"
    "time"
)

const size int = 1000000

var list = make([]int, size)
var prng = rand.New(rand.NewSource(int64(time.Now().Nanosecond())))

func BenchmarkQsort(b *testing.B) {
    for n := 0; n < b.N; n++ {
        b.StopTimer()
        for i := range list {
            list[i] = prng.Int()
        }
        b.StartTimer()

        qsort.Qsort(qsort.IntSlice(list), prng)
    }
}

func BenchmarkNativeQsort(b *testing.B) {
    for n := 0; n < b.N; n++ {
        b.StopTimer()
        for i := range list {
            list[i] = prng.Int()
        }
        b.StartTimer()

        qsort.NativeQsort(list, prng)
    }
}

func BenchmarkSort(b *testing.B) {
    for n := 0; n < b.N; n++ {
        b.StopTimer()
        for i := range list {
            list[i] = prng.Int()
        }
        b.StartTimer()

        sort.Sort(sort.IntSlice(list))
    }
}

结果(格式化我的):

PASS

BenchmarkQsort             5     513629360 ns/op
BenchmarkNativeQsort       10    160609180 ns/op
BenchmarkSort              5     292416760 ns/op

正如您所看到的,标准库的排序在随机数据上平均优于您的qsort。 NativeQsort是指您在实际问题中发布的qsort函数,并且它优于两者。在Qsortqsort.Interface之间唯一的变化就是我交换了-benchtime 10s的内置函数。因此,通用性可能是一个比另一个慢的原因。

编辑:由于排序的成本很高,因此没有很多样本,因此BenchmarkQsort 50 524389994 ns/op BenchmarkNativeQsort 100 161199217 ns/op BenchmarkSort 50 302037284 ns/op 的结果只是为了更具代表性的结果。

{{1}}