我希望生成一些关于我在python中创建的模型的统计信息。我想在它上面生成t检验,但是想知道是否有一种简单的方法可以用numpy / scipy做到这一点。周围有什么好的解释吗?
例如,我有三个相关的数据集,如下所示:
[55.0, 55.0, 47.0, 47.0, 55.0, 55.0, 55.0, 63.0]
现在,我想对他们进行学生的t检验。
答案 0 :(得分:27)
在scipy.stats包中,很少有ttest_...
个功能。请参阅here中的示例:
>>> print 't-statistic = %6.3f pvalue = %6.4f' % stats.ttest_1samp(x, m)
t-statistic = 0.391 pvalue = 0.6955
答案 1 :(得分:2)
van使用scipy的答案是完全正确的,使用scipy.stats.ttest_*
函数非常方便。
但是我来到这个页面寻找一个纯粹的 numpy 的解决方案,如标题中所述,以避免scipy依赖。为此,我要指出这里给出的例子:https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.standard_t.html
主要问题是,numpy没有累积分布函数,因此我的结论是你应该真正使用scipy。无论如何,只使用numpy是可能的:
从最初的问题我猜你想要比较你的数据集并用t检验判断是否存在显着的偏差?此外,样品配对? (见https://en.wikipedia.org/wiki/Student%27s_t-test#Unpaired_and_paired_two-sample_t-tests) 在这种情况下,您可以像这样计算t值和p值:
import numpy as np
sample1 = np.array([55.0, 55.0, 47.0, 47.0, 55.0, 55.0, 55.0, 63.0])
sample2 = np.array([54.0, 56.0, 48.0, 46.0, 56.0, 56.0, 55.0, 62.0])
# paired sample -> the difference has mean 0
difference = sample1 - sample2
# the t-value is easily computed with numpy
t = (np.mean(difference))/(difference.std(ddof=1)/np.sqrt(len(difference)))
# unfortunately, numpy does not have a build in CDF
# here is a ridiculous work-around integrating by sampling
s = np.random.standard_t(len(difference), size=100000)
p = np.sum(s<t) / float(len(s))
# using a two-sided test
print("There is a {} % probability that the paired samples stem from distributions with the same means.".format(2 * min(p, 1 - p) * 100))
这将打印There is a 73.028 % probability that the paired samples stem from distributions with the same means.
因为这远远高于任何理智的置信区间(比如说5%),所以你不应该为具体案例做任何结论。
答案 2 :(得分:-4)
一旦你得到你的t值,你可能想知道如何把它解释为概率 - 我做到了。这是我写的一个函数来帮助它。
这是基于我从http://www.vassarstats.net/rsig.html和http://en.wikipedia.org/wiki/Student%27s_t_distribution收集的信息。
# Given (possibly random) variables, X and Y, and a correlation direction,
# returns:
# (r, p),
# where r is the Pearson correlation coefficient, and p is the probability
# of getting the observed values if there is actually no correlation in the given
# direction.
#
# direction:
# if positive, p is the probability of getting the observed result when there is no
# positive correlation in the normally distributed full populations sampled by X
# and Y
# if negative, p is the probability of getting the observed result, when there is no
# negative correlation
# if 0, p is the probability of getting your result, if your hypothesis is true that
# there is no correlation in either direction
def probabilityOfResult(X, Y, direction=0):
x = len(X)
if x != len(Y):
raise ValueError("variables not same len: " + str(x) + ", and " + \
str(len(Y)))
if x < 6:
raise ValueError("must have at least 6 samples, but have " + str(x))
(corr, prb_2_tail) = stats.pearsonr(X, Y)
if not direction:
return (corr, prb_2_tail)
prb_1_tail = prb_2_tail / 2
if corr * direction > 0:
return (corr, prb_1_tail)
return (corr, 1 - prb_1_tail)