如何将所有不是7的元素设置为np.nan?
import numpy as np
data = np.array([[0,1,2,3,4,7,6,7,8,9,10],
[3,3,3,4,7,7,7,8,11,12,11],
[3,3,3,5,7,7,7,9,11,11,11],
[3,4,3,6,7,7,7,10,11,11,11],
[4,5,6,7,7,9,10,11,11,11,11]])
result = np.where(data==7)
data[~result] = np.nan
print data
Traceback (most recent call last):
File "M:\test.py", line 10, in <module>
data[~result] = np.nan
TypeError: bad operand type for unary ~: 'tuple'
答案 0 :(得分:3)
使用np.where的3参数形式:
In [49]: np.where(data==7, data, np.nan)
Out[49]:
array([[ nan, nan, nan, nan, nan, 7., nan, 7., nan, nan, nan],
[ nan, nan, nan, nan, 7., 7., 7., nan, nan, nan, nan],
[ nan, nan, nan, nan, 7., 7., 7., nan, nan, nan, nan],
[ nan, nan, nan, nan, 7., 7., 7., nan, nan, nan, nan],
[ nan, nan, nan, 7., 7., nan, nan, nan, nan, nan, nan]])
或
In [62]: np.choose(data==7, [np.nan, data])
Out[62]:
array([[ nan, nan, nan, nan, nan, 7., nan, 7., nan, nan, nan],
[ nan, nan, nan, nan, 7., 7., 7., nan, nan, nan, nan],
[ nan, nan, nan, nan, 7., 7., 7., nan, nan, nan, nan],
[ nan, nan, nan, nan, 7., 7., 7., nan, nan, nan, nan],
[ nan, nan, nan, 7., 7., nan, nan, nan, nan, nan, nan]])
关于在此解决方案中使用using_filters返回的整数索引的要求,我认为有更好的选择。如果您要从np.where
移除using_filters
:
def using_filters(data):
return np.logical_and.reduce(
[data == f(data, footprint=np.ones((3,3)), mode='constant', cval=np.inf)
for f in (filters.maximum_filter, filters.minimum_filter)])
然后using_filters
将返回一个布尔掩码。 Using a boolean mask会让这个问题变得更加容易:
import numpy as np
import scipy.ndimage.filters as filters
def using_filters(data):
return np.logical_and.reduce(
[data == f(data, footprint=np.ones((3,3)), mode='constant', cval=np.inf)
for f in (filters.maximum_filter, filters.minimum_filter)])
data = np.array([[0,1,2,3,4,7,6,7,8,9,10],
[3,3,3,4,7,7,7,8,11,12,11],
[3,3,3,5,7,7,7,9,11,11,11],
[3,4,3,6,7,7,7,10,11,11,11],
[4,5,6,7,7,9,10,11,11,11,11]], dtype='float')
result = using_filters(data)
data[~result] = np.nan
print data
# [[ nan nan nan nan nan nan nan nan nan nan nan]
# [ nan nan nan nan nan nan nan nan nan nan nan]
# [ nan nan nan nan nan 7. nan nan nan nan nan]
# [ nan nan nan nan nan nan nan nan nan 11. nan]
# [ nan nan nan nan nan nan nan nan nan nan nan]]
答案 1 :(得分:2)
必须有更好的方法,但这是我现在能想到的最好方法。创建所有np.nan
的另一个数组,然后将result
中索引处的值替换为实际值:
data_nan = np.full(data.shape, np.nan)
data_nan[result] = data[result]
data = data_nan
如果你想获得一个不在result
中的所有索引的列表,你可以这样做,虽然我认为以上可能更好:
inc = np.core.rec.fromarrays(result)
all_ind = np.core.rec.fromarrays(np.indices(data.shape).reshape(2,-1))
exc = np.setdiff1d(all_ind, inc)
data[exc['f0'], exc['f1']] = np.nan
这可以通过将每对索引转换为结构化数组的一个元素来实现,这样它们就可以作为set元素与所有索引的类似数组进行比较。然后我们做这些的设定差异并得到其余部分。
答案 2 :(得分:2)
您可以从data
获取所需的值,并使用data
填充nan
,然后将值复制回data
:
import numpy as np
data = np.array([[0,1,2,3,4,7,6,7,8,9,10],
[3,3,3,4,7,7,7,8,11,12,11],
[3,3,3,5,7,7,7,9,11,11,11],
[3,4,3,6,7,7,7,10,11,11,11],
[4,5,6,7,7,9,10,11,11,11,11]], float)
result = np.where(data==7)
values = data[result]
data.fill(np.nan)
data[result] = values