我有以下数据框:
> head(table,10)
Date Open High Low Close Volume Adj.Close
1 2014-04-11 32.64 33.48 32.15 32.87 28040700 32.87
2 2014-04-10 34.88 34.98 33.09 33.40 33970700 33.40
3 2014-04-09 34.19 35.00 33.95 34.87 21597500 34.87
4 2014-04-08 33.10 34.43 33.02 33.83 35440300 33.83
5 2014-04-07 34.11 34.37 32.53 33.07 47770200 33.07
6 2014-04-04 36.01 36.05 33.83 34.26 41049900 34.26
7 2014-04-03 36.66 36.79 35.51 35.76 16792000 35.76
8 2014-04-02 36.68 36.86 36.56 36.64 14522800 36.64
9 2014-04-01 36.16 36.86 36.15 36.49 15734000 36.49
10 2014-03-31 36.46 36.58 35.73 35.90 15153200 35.90
我正在尝试使用
将其转换为xts文件> table3<-xts(table[,-1],order.by=table$Date)
但是我收到了这个错误:
Error in xts(table[, -1], order.by = table$Date) :
order.by requires an appropriate time-based object
我哪里出错了?我认为表$ Date是按时间组织的。
答案 0 :(得分:14)
?xts
表示以下关于order.by
:
目前可接受的课程包括:'日期','POSIXct','timeDate', 以及索引值保留的'yearmon'和'yearqtr' 唯一的。
因此需要额外的显式转换,例如到POSIXct
:
xts(table[, -1], order.by=as.POSIXct(table$Date))
Open High Low Close Volume Adj.Close
2014-03-31 36.46 36.58 35.73 35.90 15153200 35.90
2014-04-01 36.16 36.86 36.15 36.49 15734000 36.49
2014-04-02 36.68 36.86 36.56 36.64 14522800 36.64
2014-04-03 36.66 36.79 35.51 35.76 16792000 35.76
2014-04-04 36.01 36.05 33.83 34.26 41049900 34.26
2014-04-07 34.11 34.37 32.53 33.07 47770200 33.07
2014-04-08 33.10 34.43 33.02 33.83 35440300 33.83
2014-04-09 34.19 35.00 33.95 34.87 21597500 34.87
2014-04-10 34.88 34.98 33.09 33.40 33970700 33.40
2014-04-11 32.64 33.48 32.15 32.87 28040700 32.87
另一种选择:
xts(table[, -1], order.by=as.Date(table$Date))
答案 1 :(得分:-1)
使用tidyquant
包的替代方法是使用as_xts()
,它专门用于将数据帧转换为xts对象。只需将date_col
指定为包含日期的列即可。如果日期列的类是字符,则需要使用mutate(date = ymd(date))
或类似的东西从字符转换为日期类。以下是as_xts()
:
library(tidyquant)
# Get stock prices
stock_prices <- "AAPL" %>%
tq_get(get = "stock.prices",
from = "2007-01-01",
to = "2017-01-01")
stock_prices
#> # A tibble: 2,518 × 7
#> date open high low close volume adjusted
#> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2007-01-03 86.29 86.58 81.90 83.80 309579900 10.85709
#> 2 2007-01-04 84.05 85.95 83.82 85.66 211815100 11.09807
#> 3 2007-01-05 85.77 86.20 84.40 85.05 208685400 11.01904
#> 4 2007-01-08 85.96 86.53 85.28 85.47 199276700 11.07345
#> 5 2007-01-09 86.45 92.98 85.15 92.57 837324600 11.99333
#> 6 2007-01-10 94.75 97.80 93.45 97.00 738220000 12.56728
#> 7 2007-01-11 95.94 96.78 95.10 95.80 360063200 12.41180
#> 8 2007-01-12 94.59 95.06 93.23 94.62 328172600 12.25892
#> 9 2007-01-16 95.68 97.25 95.45 97.10 311019100 12.58023
#> 10 2007-01-17 97.56 97.60 94.82 94.95 411565000 12.30168
#> # ... with 2,508 more rows
# Coerce to xts object
stock_prices %>%
as_xts(date_col = date)
#> open high low close volume adjusted
#> 2007-01-03 86.29 86.58 81.90 83.80 309579900 10.85709
#> 2007-01-04 84.05 85.95 83.82 85.66 211815100 11.09807
#> 2007-01-05 85.77 86.20 84.40 85.05 208685400 11.01904
#> 2007-01-08 85.96 86.53 85.28 85.47 199276700 11.07345
#> 2007-01-09 86.45 92.98 85.15 92.57 837324600 11.99333
#> 2007-01-10 94.75 97.80 93.45 97.00 738220000 12.56728
#> 2007-01-11 95.94 96.78 95.10 95.80 360063200 12.41180
#> 2007-01-12 94.59 95.06 93.23 94.62 328172600 12.25892
#> 2007-01-16 95.68 97.25 95.45 97.10 311019100 12.58023
#> 2007-01-17 97.56 97.60 94.82 94.95 411565000 12.30168
#> 2007-01-18 92.10 92.11 89.05 89.07 591151400 11.53987
#> 2007-01-19 88.63 89.65 88.12 88.50 341118400 11.46602
#> 2007-01-22 89.14 89.16 85.65 86.79 363506500 11.24447
#> 2007-01-23 85.73 87.51 85.51 85.70 301856100 11.10325