我正在尝试使用Pandas向群组添加过滤器。在下面的棒球数据中,我希望找出从导入列中的初始“N”到最终“Y”所需的平均时间。基本上我想要计算每个组的长度,包括导入列中的'Y'并且有多行。任何提示都会有帮助!
playerID yearid votedBy ballots needed votes inducted category needed_note
2860 aaronha01 1982 BBWAA 415 312 406 Y Player NaN
3743 abbotji01 2005 BBWAA 516 387 13 N Player NaN
146 adamsba01 1937 BBWAA 201 151 8 N Player NaN
259 adamsba01 1938 BBWAA 262 197 11 N Player NaN
384 adamsba01 1939 BBWAA 274 206 11 N Player NaN
497 adamsba01 1942 BBWAA 233 175 11 N Player NaN
574 adamsba01 1945 BBWAA 247 186 7 N Player NaN
2108 adamsbo03 1966 BBWAA 302 227 1 N Player NaN
答案 0 :(得分:0)
我修改了您的数据集,以便有两个这样的组。一个有N
到Y
的两行,另一行有N
到Y
的8行。这取决于您是否计入包含y
行的In [25]:
df=pd.read_clipboard()
print df
playerID yearid votedBy ballots needed votes inducted category needed_note
3741 abbotji01 2005 BBWAA 516 387 13 N Player NaN
2860 aaronha01 1982 BBWAA 415 312 406 Y Player NaN
3743 abbotji01 2005 BBWAA 516 387 13 N Player NaN
146 adamsba01 1937 BBWAA 201 151 8 N Player NaN
259 adamsba01 1938 BBWAA 262 197 11 N Player NaN
384 adamsba01 1939 BBWAA 274 206 11 N Player NaN
497 adamsba01 1942 BBWAA 233 175 11 N Player NaN
574 adamsba01 1945 BBWAA 247 186 7 N Player NaN
2108 adamsbo03 1966 BBWAA 302 227 1 N Player NaN
2861 aaronha01 1982 BBWAA 415 312 406 Y Player NaN
In [26]:
df['isY']=(df.inducted=='Y')
df['isY']=np.hstack((0,df['isY'].cumsum().values[:-1])).T
In [27]:
print df.groupby('isY').count()
playerID yearid votedBy ballots needed votes inducted category needed_note isY
0 2 2 2 2 2 2 2 2 0 2
1 8 8 8 8 8 8 8 8 0 8
[2 rows x 10 columns]
。如果没有,它将有两个组,一个包含1行,另一个包含7行。它看起来你没有时间序列列,所以我想这意味着行按时间均匀分布。
Y
假设您不计算df2=df.groupby('isY').count().isY-1
df2[df2!=1].mean()
,则可以通过以下方式计算平均值:
{{1}}
答案 1 :(得分:0)
我模拟了自己的数据,以便轻松测试您的问题。我创建了一组名为df_inducted的玩家,其中包括最终被导入的玩家,然后使用isin()函数,我们可以确保只在分析中考虑它们。然后我找到他们日期的最小值和最大值并平均他们的差异。
import pandas as pd
df = pd.DataFrame({'player':['Nate','Will','Nate','Will'],
'inducted': ['Y','Y','N','N'],
'date':[2014,2000,2011,1999]})
df_inducted = df[df.inducted=='Y']
df_subset = df[df.player.isin(df_inducted.player)]
maxs = df_subset.groupby('player')['date'].max()
mins = df_subset.groupby('player')['date'].min()
maxs = pd.DataFrame(maxs)
maxs.columns = ['max_date']
mins = pd.DataFrame(mins)
mins.columns = ['min_date']
min_and_max = maxs.join(mins)
final = min_and_max['max_date'] - min_and_max['min_date']
print "average time:", final.mean()
答案 2 :(得分:0)
类 DataFrameGroupBy 的过滤器方法在组中的每个子帧上运行。见help(pd.core.groupby.DataFrameGroupBy.filter)
。数据是:
print df
inducted playerID
0 Y a
1 N a
2 N a
3 Y b
4 N b
5 N c
6 N c
7 N c
示例代码:
import pandas as pd
g = df.groupby('playerID')
madeit = g.filter(
lambda subframe:
'Y' in set(subframe.inducted)).groupby('playerID')
# The filter removed player 'c' who never has inducted == 'Y'
print madeit.head()
inducted playerID
playerID
a 0 Y a
1 N a
2 N a
b 3 Y b
4 N b
# The 'aggregate' function applies a function to each subframe
print madeit.aggregate(len)
inducted
playerID
a 3
b 2