我一直在编写直方图,我在这里得到了很多帮助。我一直使用哈希表对直方图进行编码,以存储密钥和频率值,因为密钥的分布是未知的;所以它们可能不会被分类或连续组合在一起。
我的代码存在的问题是它在GC中花费了太多时间,所以看起来像是空间泄漏,因为在GC中花费的时间是60.3% - 所以我的生产率差了39.7%。
出了什么问题?我试图在直方图函数中对事情进行严格处理,并且我也在内联它(GC时间从69.1%变为59.4%。)
请注意我通过不更新HT中的频率来简化此代码。
{-# LANGUAGE BangPatterns #-}
import qualified Data.HashTable.IO as H
import qualified Data.Vector as V
type HashTable k v = H.BasicHashTable k v
n :: Int
n = 5000000
kv :: V.Vector (Int,Int)
kv = V.zip k v
where
k = V.generate n (\i -> i `mod` 10)
v = V.generate n (\i -> 1)
histogram :: V.Vector (Int,Int) -> Int -> IO (H.CuckooHashTable Int Int)
histogram vec !n = do
ht <- H.newSized n
go ht (n-1)
where
go ht = go'
where
go' (-1) = return ht
go' !i = do
let (k,v) = vec V.! i
H.insert ht k v
go' (i-1)
{-# INLINE histogram #-}
main :: IO ()
main = do
ht <- histogram kv n
putStrLn "done"
以下是编译方式:
ghc --make -O3 -fllvm -rtsopts histogram.hs
诊断:
jap@devbox:~/dev$ ./histogram +RTS -sstderr
done
863,187,472 bytes allocated in the heap
708,960,048 bytes copied during GC
410,476,592 bytes maximum residency (5 sample(s))
4,791,736 bytes maximum slop
613 MB total memory in use (0 MB lost due to fragmentation)
Tot time (elapsed) Avg pause Max pause
Gen 0 1284 colls, 0 par 0.46s 0.46s 0.0004s 0.0322s
Gen 1 5 colls, 0 par 0.36s 0.36s 0.0730s 0.2053s
INIT time 0.00s ( 0.00s elapsed)
MUT time 0.51s ( 0.50s elapsed)
GC time 0.82s ( 0.82s elapsed)
EXIT time 0.03s ( 0.04s elapsed)
Total time 1.36s ( 1.36s elapsed)
%GC time 60.3% (60.4% elapsed)
Alloc rate 1,708,131,822 bytes per MUT second
Productivity 39.7% of total user, 39.7% of total elapsed
答案 0 :(得分:9)
为了便于比较,这就是我运行你的代码所发布的:
863,187,472 bytes allocated in the heap
708,960,048 bytes copied during GC
410,476,592 bytes maximum residency (5 sample(s))
4,791,736 bytes maximum slop
613 MB total memory in use (0 MB lost due to fragmentation)
Tot time (elapsed) Avg pause Max pause
Gen 0 1284 colls, 0 par 1.01s 1.01s 0.0008s 0.0766s
Gen 1 5 colls, 0 par 0.81s 0.81s 0.1626s 0.4783s
INIT time 0.00s ( 0.00s elapsed)
MUT time 1.04s ( 1.04s elapsed)
GC time 1.82s ( 1.82s elapsed)
EXIT time 0.04s ( 0.04s elapsed)
Total time 2.91s ( 2.91s elapsed)
%GC time 62.6% (62.6% elapsed)
Alloc rate 827,493,210 bytes per MUT second
Productivity 37.4% of total user, 37.4% of total elapsed
鉴于您的向量元素只是(Int, Int)
元组,我们没有理由不使用Data.Vector.Unboxed
而不是纯Data.Vector
。这已经导致了显着的改善:
743,148,592 bytes allocated in the heap
38,440 bytes copied during GC
231,096,768 bytes maximum residency (4 sample(s))
4,759,104 bytes maximum slop
226 MB total memory in use (0 MB lost due to fragmentation)
Tot time (elapsed) Avg pause Max pause
Gen 0 977 colls, 0 par 0.23s 0.23s 0.0002s 0.0479s
Gen 1 4 colls, 0 par 0.22s 0.22s 0.0543s 0.1080s
INIT time 0.00s ( 0.00s elapsed)
MUT time 1.04s ( 1.04s elapsed)
GC time 0.45s ( 0.45s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 1.49s ( 1.49s elapsed)
%GC time 30.2% (30.2% elapsed)
Alloc rate 715,050,070 bytes per MUT second
Productivity 69.8% of total user, 69.9% of total elapsed
接下来,我们可能会使用vector
库为此目的提供的优化函数,而不是对向量进行手动滚动递归。代码...
import qualified Data.HashTable.IO as H
import qualified Data.Vector.Unboxed as V
n :: Int
n = 5000000
kv :: V.Vector (Int,Int)
kv = V.zip k v
where
k = V.generate n (\i -> i `mod` 10)
v = V.generate n (\i -> 1)
histogram :: V.Vector (Int,Int) -> Int -> IO (H.CuckooHashTable Int Int)
histogram vec n = do
ht <- H.newSized n
V.mapM_ (\(k, v) -> H.insert ht k v) vec
return ht
{-# INLINE histogram #-}
main :: IO ()
main = do
ht <- histogram kv n
putStrLn "done"
......结果:
583,151,048 bytes allocated in the heap
35,632 bytes copied during GC
151,096,672 bytes maximum residency (3 sample(s))
3,003,040 bytes maximum slop
148 MB total memory in use (0 MB lost due to fragmentation)
Tot time (elapsed) Avg pause Max pause
Gen 0 826 colls, 0 par 0.20s 0.20s 0.0002s 0.0423s
Gen 1 3 colls, 0 par 0.12s 0.12s 0.0411s 0.1222s
INIT time 0.00s ( 0.00s elapsed)
MUT time 0.92s ( 0.92s elapsed)
GC time 0.32s ( 0.33s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 1.25s ( 1.25s elapsed)
%GC time 25.9% (26.0% elapsed)
Alloc rate 631,677,209 bytes per MUT second
Productivity 74.1% of total user, 74.0% of total elapsed
保存了81MB,一点也不差。我们能做得更好吗?
堆配置文件(这应该是你在内存消耗困难时首先考虑的事情 - 没有一个在黑暗中拍摄时调试它们)将揭示,即使使用原始代码,峰值内存消耗很早就会发生。严格来说,我们没有泄漏;我们从一开始就花了很多钱。现在,请注意,哈希表是使用ht <- H.newSized n
创建的,n = 5000000
。除非你期望有这么多不同的键(而不是元素),否则这是非常浪费的。将初始大小更改为10(测试中实际拥有的键数)可以显着改善:
432,059,960 bytes allocated in the heap
50,200 bytes copied during GC
44,416 bytes maximum residency (2 sample(s))
25,216 bytes maximum slop
1 MB total memory in use (0 MB lost due to fragmentation)
Tot time (elapsed) Avg pause Max pause
Gen 0 825 colls, 0 par 0.01s 0.01s 0.0000s 0.0000s
Gen 1 2 colls, 0 par 0.00s 0.00s 0.0002s 0.0003s
INIT time 0.00s ( 0.00s elapsed)
MUT time 0.90s ( 0.90s elapsed)
GC time 0.01s ( 0.01s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 0.91s ( 0.90s elapsed)
%GC time 0.6% (0.6% elapsed)
Alloc rate 481,061,802 bytes per MUT second
Productivity 99.4% of total user, 99.4% of total elapsed
最后,我们不妨让我们的生活更简单,并尝试使用来自unordered-containers
的纯粹但高效的哈希映射。代码...
import qualified Data.HashMap.Strict as M
import qualified Data.Vector.Unboxed as V
n :: Int
n = 5000000
kv :: V.Vector (Int,Int)
kv = V.zip k v
where
k = V.generate n (\i -> i `mod` 10)
v = V.generate n (\i -> 1)
histogram :: V.Vector (Int,Int) -> M.HashMap Int Int
histogram vec =
V.foldl' (\ht (k, v) -> M.insert k v ht) M.empty vec
main :: IO ()
main = do
print $ M.size $ histogram kv
putStrLn "done"
......和结果。
55,760 bytes allocated in the heap
3,512 bytes copied during GC
44,416 bytes maximum residency (1 sample(s))
17,024 bytes maximum slop
1 MB total memory in use (0 MB lost due to fragmentation)
Tot time (elapsed) Avg pause Max pause
Gen 0 0 colls, 0 par 0.00s 0.00s 0.0000s 0.0000s
Gen 1 1 colls, 0 par 0.00s 0.00s 0.0002s 0.0002s
INIT time 0.00s ( 0.00s elapsed)
MUT time 0.34s ( 0.34s elapsed)
GC time 0.00s ( 0.00s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 0.34s ( 0.34s elapsed)
%GC time 0.0% (0.0% elapsed)
Alloc rate 162,667 bytes per MUT second
Productivity 99.9% of total user, 100.0% of total elapsed
快〜60%。它仍然有待观察如何使用更大量的密钥进行扩展,但是您的测试数据unordered-containers
最终不仅更方便(纯函数;实际更新直方图值只需更改M.insert
到M.insertWith
)但也更快。