我已使用 hadoop jar 命令在CDH5 Beta 2上使用以下命令提交了MR作业
hadoop jar ./hadoop-examples-0.0.1-SNAPSHOT.jar com.aravind.learning.hadoop.mapred.join.ReduceSideJoinDriver tech_talks/users.csv tech_talks/ratings.csv tech_talks/output/ReduceSideJoinDriver/
我还尝试明确提供fs名称和作业跟踪网址,如下所示
hadoop jar ./hadoop-examples-0.0.1-SNAPSHOT.jar com.aravind.learning.hadoop.mapred.join.ReduceSideJoinDriver -Dfs.default.name=hdfs://abc.com:8020 -Dmapreduce.job.tracker=x.x.x.x:8021 tech_talks/users.csv tech_talks/ratings.csv tech_talks/output/ReduceSideJoinDriver/
作业成功运行但使用 LocalJobRunner 而不是提交到群集。输出写入HDFS并且是正确的。不知道我在这里做错了什么,所以感谢你的意见。我也尝试过如下明确指定fs和作业跟踪器,但结果相同
14/04/16 20:35:44 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
14/04/16 20:35:44 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
14/04/16 20:35:45 WARN mapreduce.JobSubmitter: No job jar file set. User classes may not be found. See Job or Job#setJar(String).
14/04/16 20:35:45 INFO input.FileInputFormat: Total input paths to process : 2
14/04/16 20:35:45 INFO mapreduce.JobSubmitter: number of splits:2
14/04/16 20:35:46 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local1427968352_0001
14/04/16 20:35:46 WARN conf.Configuration: file:/tmp/hadoop-ird2/mapred/staging/ird21427968352/.staging/job_local1427968352_0001/job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval; Ignoring.
14/04/16 20:35:46 WARN conf.Configuration: file:/tmp/hadoop-ird2/mapred/staging/ird21427968352/.staging/job_local1427968352_0001/job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts; Ignoring.
14/04/16 20:35:46 WARN conf.Configuration: file:/tmp/hadoop-ird2/mapred/local/localRunner/ird2/job_local1427968352_0001/job_local1427968352_0001.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval; Ignoring.
14/04/16 20:35:46 WARN conf.Configuration: file:/tmp/hadoop-ird2/mapred/local/localRunner/ird2/job_local1427968352_0001/job_local1427968352_0001.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts; Ignoring.
14/04/16 20:35:46 INFO mapreduce.Job: The url to track the job: http://localhost:8080/
14/04/16 20:35:46 INFO mapreduce.Job: Running job: job_local1427968352_0001
14/04/16 20:35:46 INFO mapred.LocalJobRunner: OutputCommitter set in config null
14/04/16 20:35:46 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
14/04/16 20:35:46 INFO mapred.LocalJobRunner: Waiting for map tasks
14/04/16 20:35:46 INFO mapred.LocalJobRunner: Starting task: attempt_local1427968352_0001_m_000000_0
14/04/16 20:35:46 INFO mapred.Task: Using ResourceCalculatorProcessTree : [ ]
14/04/16 20:35:46 INFO mapred.MapTask: Processing split: hdfs://...:8020/user/ird2/tech_talks/ratings.csv:0+4388258
14/04/16 20:35:46 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
14/04/16 20:35:46 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
14/04/16 20:35:46 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
14/04/16 20:35:46 INFO mapred.MapTask: soft limit at 83886080
14/04/16 20:35:46 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
14/04/16 20:35:46 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
14/04/16 20:35:47 INFO mapreduce.Job: Job job_local1427968352_0001 running in uber mode : false
14/04/16 20:35:47 INFO mapreduce.Job: map 0% reduce 0%
14/04/16 20:35:48 INFO mapred.LocalJobRunner:
14/04/16 20:35:48 INFO mapred.MapTask: Starting flush of map output
14/04/16 20:35:48 INFO mapred.MapTask: Spilling map output
14/04/16 20:35:48 INFO mapred.MapTask: bufstart = 0; bufend = 6485388; bufvoid = 104857600
14/04/16 20:35:48 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 24860980(99443920); length = 1353417/6553600
14/04/16 20:35:49 INFO mapred.MapTask: Finished spill 0
14/04/16 20:35:49 INFO mapred.Task: Task:attempt_local1427968352_0001_m_000000_0 is done. And is in the process of committing
14/04/16 20:35:49 INFO mapred.LocalJobRunner: map
14/04/16 20:35:49 INFO mapred.Task: Task 'attempt_local1427968352_0001_m_000000_0' done.
14/04/16 20:35:49 INFO mapred.LocalJobRunner: Finishing task: attempt_local1427968352_0001_m_000000_0
14/04/16 20:35:49 INFO mapred.LocalJobRunner: Starting task: attempt_local1427968352_0001_m_000001_0
14/04/16 20:35:49 INFO mapred.Task: Using ResourceCalculatorProcessTree : [ ]
14/04/16 20:35:49 INFO mapred.MapTask: Processing split: hdfs://...:8020/user/ird2/tech_talks/users.csv:0+186304
14/04/16 20:35:49 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
14/04/16 20:35:49 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
14/04/16 20:35:49 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
14/04/16 20:35:49 INFO mapred.MapTask: soft limit at 83886080
14/04/16 20:35:49 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
14/04/16 20:35:49 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
14/04/16 20:35:49 INFO mapred.LocalJobRunner:
14/04/16 20:35:49 INFO mapred.MapTask: Starting flush of map output
14/04/16 20:35:49 INFO mapred.MapTask: Spilling map output
14/04/16 20:35:49 INFO mapred.MapTask: bufstart = 0; bufend = 209667; bufvoid = 104857600
14/04/16 20:35:49 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26192144(104768576); length = 22253/6553600
14/04/16 20:35:49 INFO mapred.MapTask: Finished spill 0
14/04/16 20:35:49 INFO mapred.Task: Task:attempt_local1427968352_0001_m_000001_0 is done. And is in the process of committing
14/04/16 20:35:49 INFO mapred.LocalJobRunner: map
14/04/16 20:35:49 INFO mapred.Task: Task 'attempt_local1427968352_0001_m_000001_0' done.
14/04/16 20:35:49 INFO mapred.LocalJobRunner: Finishing task: attempt_local1427968352_0001_m_000001_0
14/04/16 20:35:49 INFO mapred.LocalJobRunner: map task executor complete.
14/04/16 20:35:49 INFO mapred.LocalJobRunner: Waiting for reduce tasks
14/04/16 20:35:49 INFO mapred.LocalJobRunner: Starting task: attempt_local1427968352_0001_r_000000_0
14/04/16 20:35:49 INFO mapred.Task: Using ResourceCalculatorProcessTree : [ ]
14/04/16 20:35:49 INFO mapred.ReduceTask: Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@5116331d
14/04/16 20:35:49 INFO reduce.MergeManagerImpl: MergerManager: memoryLimit=652528832, maxSingleShuffleLimit=163132208, mergeThreshold=430669056, ioSortFactor=10, memToMemMergeOutputsThreshold=10
14/04/16 20:35:49 INFO reduce.EventFetcher: attempt_local1427968352_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
14/04/16 20:35:49 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1427968352_0001_m_000001_0 decomp: 220797 len: 220801 to MEMORY
14/04/16 20:35:49 INFO reduce.InMemoryMapOutput: Read 220797 bytes from map-output for attempt_local1427968352_0001_m_000001_0
14/04/16 20:35:49 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 220797, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->220797
14/04/16 20:35:49 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1427968352_0001_m_000000_0 decomp: 7162100 len: 7162104 to MEMORY
14/04/16 20:35:49 INFO reduce.InMemoryMapOutput: Read 7162100 bytes from map-output for attempt_local1427968352_0001_m_000000_0
14/04/16 20:35:49 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 7162100, inMemoryMapOutputs.size() -> 2, commitMemory -> 220797, usedMemory ->7382897
14/04/16 20:35:49 INFO reduce.EventFetcher: EventFetcher is interrupted.. Returning
14/04/16 20:35:49 INFO mapred.LocalJobRunner: 2 / 2 copied.
14/04/16 20:35:49 INFO reduce.MergeManagerImpl: finalMerge called with 2 in-memory map-outputs and 0 on-disk map-outputs
14/04/16 20:35:49 INFO mapred.Merger: Merging 2 sorted segments
14/04/16 20:35:49 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 7382885 bytes
14/04/16 20:35:50 INFO reduce.MergeManagerImpl: Merged 2 segments, 7382897 bytes to disk to satisfy reduce memory limit
14/04/16 20:35:50 INFO reduce.MergeManagerImpl: Merging 1 files, 7382899 bytes from disk
14/04/16 20:35:50 INFO reduce.MergeManagerImpl: Merging 0 segments, 0 bytes from memory into reduce
14/04/16 20:35:50 INFO mapred.Merger: Merging 1 sorted segments
14/04/16 20:35:50 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 7382889 bytes
14/04/16 20:35:50 INFO mapred.LocalJobRunner: 2 / 2 copied.
14/04/16 20:35:50 INFO Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
14/04/16 20:35:50 INFO mapreduce.Job: map 100% reduce 0%
14/04/16 20:35:51 INFO mapred.Task: Task:attempt_local1427968352_0001_r_000000_0 is done. And is in the process of committing
14/04/16 20:35:51 INFO mapred.LocalJobRunner: 2 / 2 copied.
14/04/16 20:35:51 INFO mapred.Task: Task attempt_local1427968352_0001_r_000000_0 is allowed to commit now
14/04/16 20:35:51 INFO output.FileOutputCommitter: Saved output of task 'attempt_local1427968352_0001_r_000000_0' to hdfs://...:8020/user/ird2/tech_talks/output/ReduceSideJoinDriver/_temporary/0/task_local1427968352_0001_r_000000
14/04/16 20:35:51 INFO mapred.LocalJobRunner: reduce > reduce
14/04/16 20:35:51 INFO mapred.Task: Task 'attempt_local1427968352_0001_r_000000_0' done.
14/04/16 20:35:51 INFO mapred.LocalJobRunner: Finishing task: attempt_local1427968352_0001_r_000000_0
14/04/16 20:35:51 INFO mapred.LocalJobRunner: reduce task executor complete.
14/04/16 20:35:52 INFO mapreduce.Job: map 100% reduce 100%
14/04/16 20:35:52 INFO mapreduce.Job: Job job_local1427968352_0001 completed successfully
14/04/16 20:35:52 INFO mapreduce.Job: Counters: 38
File System Counters
FILE: Number of bytes read=14767932
FILE: Number of bytes written=29952985
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=13537382
HDFS: Number of bytes written=2949787
HDFS: Number of read operations=28
HDFS: Number of large read operations=0
HDFS: Number of write operations=5
Map-Reduce Framework
Map input records=343919
Map output records=343919
Map output bytes=6695055
Map output materialized bytes=7382905
Input split bytes=272
Combine input records=0
Combine output records=0
Reduce input groups=5564
Reduce shuffle bytes=7382905
Reduce input records=343919
Reduce output records=5564
Spilled Records=687838
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=92
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=1416101888
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=4574562
File Output Format Counters
Bytes Written=2949787
驱动程序代码
public class ReduceSideJoinDriver extends Configured implements Tool
{
@Override
public int run(String[] args) throws Exception
{
if (args.length != 3)
{
System.err.printf("Usage: %s [generic options] <input> <output>\n", getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.err);
return -1;
}
Path usersFile = new Path(args[0]);
Path ratingsFile = new Path(args[1]);
Job job = Job.getInstance(getConf(), "Aravind - Reduce Side Join");
job.getConfiguration().setStrings(usersFile.getName(), "user");
job.getConfiguration().setStrings(ratingsFile.getName(), "rating");
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(TagAndRecord.class);
TextInputFormat.addInputPath(job, usersFile);
TextInputFormat.addInputPath(job, ratingsFile);
TextOutputFormat.setOutputPath(job, new Path(args[2]));
job.setMapperClass(ReduceSideJoinMapper.class);
job.setReducerClass(ReduceSideJoinReducer.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(Text.class);
return job.waitForCompletion(true) ? 0 : 1;
}
public static void main(String args[]) throws Exception
{
int exitCode = ToolRunner.run(new Configuration(), new ReduceSideJoinDriver(), args);
System.exit(exitCode);
}
}
答案 0 :(得分:1)
确保hadoop classpath中有以下有效配置文件。默认情况下,配置文件取自目录/ etc / hadoop / conf。此活动应该是hadoop客户端节点设置的一部分。
mapred-site.xml
yarn-site.xml
core-site.xml
如果上述配置文件为空。你必须使用正确的属性来学习上述文件。人口可以通过两种方式实现
在Cloudera Manager中单击服务纱线时,在操作部分中,有一个选项 Deploy client configuration
以及启动,停止等。使用该选项部署客户端配置。
如果节点不由CM管理且节点上未配置yarn网关,则有时上述选项可能不起作用。使用 Download client configuration
选项而不是部署客户端配置。解压缩下载的zip配置文件(上面的文件)并手动将这些文件复制到/ etc / hadoop / conf位置。
为了执行jar,可以使用hadoop
或yarn
。
答案 1 :(得分:0)
显然,您只能从指定为网关节点的节点提交hadoop作业。一旦我从网关节点提交作业,一切正常。