编译错误:“linux / export.h:没有这样的文件或目录”

时间:2014-04-16 19:16:27

标签: linux kernel

当我尝试编译此代码时,它会给出错误" linux / export.h:没有这样的文件或目录"和其他库相同,但export.h出现在/ usr / include ??

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/swap.h> /* struct reclaim_state */
#include <linux/cache.h>
#include <linux/init.h>
#include </usr/include/export.h>
#include <linux/rcupdate.h>
#include <linux/list.h>
#include <linux/kmemleak.h>
#include <trace/events/kmem.h>
#include <linux/atomic.h>

#include "slab.h"
#if PAGE_SIZE <= (32767 * 2)
typedef s16 slobidx_t;
#else
typedef s32 slobidx_t;
#endif

struct slob_block {
slobidx_t units;
};
 typedef struct slob_block slob_t;

#define SLOB_BREAK1 256
#define SLOB_BREAK2 1024
static LIST_HEAD(free_slob_small);
static LIST_HEAD(free_slob_medium);
static LIST_HEAD(free_slob_large);

static inline int slob_page_free(struct page *sp)
{
return PageSlobFree(sp);
}

static void set_slob_page_free(struct page *sp, struct list_head *list)
{
list_add(&sp->list, list);
__SetPageSlobFree(sp);
}

static inline void clear_slob_page_free(struct page *sp)
{
list_del(&sp->list);
__ClearPageSlobFree(sp);
}

#define SLOB_UNIT sizeof(slob_t)
#define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)

struct slob_rcu {
struct rcu_head head;
int size;
};

static DEFINE_SPINLOCK(slob_lock);

static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
{
slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
slobidx_t offset = next - base;

if (size > 1) {
    s[0].units = size;
    s[1].units = offset;
} else
    s[0].units = -offset;
}


static slobidx_t slob_units(slob_t *s)
{
if (s->units > 0)
    return s->units;
return 1;
}

static slob_t *slob_next(slob_t *s)
{
slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
slobidx_t next;

if (s[0].units < 0)
    next = -s[0].units;
else
    next = s[1].units;
return base+next;
} 

static int slob_last(slob_t *s)
{
return !((unsigned long)slob_next(s) & ~PAGE_MASK);
}

static void *slob_new_pages(gfp_t gfp, int order, int node)
{
void *page;

#ifdef CONFIG_NUMA
if (node != NUMA_NO_NODE)
    page = alloc_pages_exact_node(node, gfp, order);
else
#endif
    page = alloc_pages(gfp, order);

if (!page)
    return NULL;

return page_address(page);
}

 static void slob_free_pages(void *b, int order)
{
if (current->reclaim_state)
    current->reclaim_state->reclaimed_slab += 1 << order;
free_pages((unsigned long)b, order);
}

static void *slob_page_alloc(struct page *sp, size_t size, int align)
{
slob_t *prev, *cur, *aligned = NULL;
int delta = 0, units = SLOB_UNITS(size);

for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
    slobidx_t avail = slob_units(cur);

    if (align) {
        aligned = (slob_t *)ALIGN((unsigned long)cur, align);
        delta = aligned - cur;
    }
    if (avail >= units + delta) { /* room enough? */
        slob_t *next;

        if (delta) { /* need to fragment head to align? */
            next = slob_next(cur);
            set_slob(aligned, avail - delta, next);
            set_slob(cur, delta, aligned);
            prev = cur;
            cur = aligned;
            avail = slob_units(cur);
        }

        next = slob_next(cur);
        if (avail == units) { /* exact fit? unlink. */
            if (prev)
                set_slob(prev, slob_units(prev), next);
            else
                sp->freelist = next;
        } else { /* fragment */
            if (prev)
                set_slob(prev, slob_units(prev), cur + units);
            else
                sp->freelist = cur + units;
            set_slob(cur + units, avail - units, next);
        }

        sp->units -= units;
        if (!sp->units)
            clear_slob_page_free(sp);
        return cur;
    }
    if (slob_last(cur))
        return NULL;
}
 }

static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
{
struct page *sp;
struct list_head *prev;
struct list_head *slob_list;
slob_t *b = NULL;
unsigned long flags;

if (size < SLOB_BREAK1)
    slob_list = &free_slob_small;
else if (size < SLOB_BREAK2)
    slob_list = &free_slob_medium;
else
    slob_list = &free_slob_large;

spin_lock_irqsave(&slob_lock, flags);
list_for_each_entry(sp, slob_list, list) {
#ifdef CONFIG_NUMA
    if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
        continue;
#endif
    if (sp->units < SLOB_UNITS(size))
        continue;
    prev = sp->list.prev;
    b = slob_page_alloc(sp, size, align);
    if (!b)
        continue;

    if (prev != slob_list->prev &&
            slob_list->next != prev->next)
        list_move_tail(slob_list, prev->next);
    break;
}
spin_unlock_irqrestore(&slob_lock, flags);

/* Not enough space: must allocate a new page */
if (!b) {
    b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
    if (!b)
        return NULL;
    sp = virt_to_page(b);
    __SetPageSlab(sp);

    spin_lock_irqsave(&slob_lock, flags);
    sp->units = SLOB_UNITS(PAGE_SIZE);
    sp->freelist = b;
    INIT_LIST_HEAD(&sp->list);
    set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
    set_slob_page_free(sp, slob_list);
    b = slob_page_alloc(sp, size, align);
    BUG_ON(!b);
    spin_unlock_irqrestore(&slob_lock, flags);
}
if (unlikely((gfp & __GFP_ZERO) && b))
    memset(b, 0, size);
return b;
 }

static void slob_free(void *block, int size) 
{
struct page *sp;
slob_t *prev, *next, *b = (slob_t *)block;
slobidx_t units;
unsigned long flags;
struct list_head *slob_list;

if (unlikely(ZERO_OR_NULL_PTR(block)))
    return;
BUG_ON(!size);

sp = virt_to_page(block);
units = SLOB_UNITS(size);

spin_lock_irqsave(&slob_lock, flags);

if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
    /* Go directly to page allocator. Do not pass slob allocator */
    if (slob_page_free(sp))
        clear_slob_page_free(sp);
    spin_unlock_irqrestore(&slob_lock, flags);
    __ClearPageSlab(sp);
    page_mapcount_reset(sp);
    slob_free_pages(b, 0);
    return;
}

if (!slob_page_free(sp)) {
    /* This slob page is about to become partially free. Easy! */
    sp->units = units;
    sp->freelist = b;
    set_slob(b, units,
        (void *)((unsigned long)(b +
                SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
    if (size < SLOB_BREAK1)
        slob_list = &free_slob_small;
    else if (size < SLOB_BREAK2)
        slob_list = &free_slob_medium;
    else
        slob_list = &free_slob_large;
    set_slob_page_free(sp, slob_list);
    goto out;
}

sp->units += units;

if (b < (slob_t *)sp->freelist) {
    if (b + units == sp->freelist) {
        units += slob_units(sp->freelist);
        sp->freelist = slob_next(sp->freelist);
    }
    set_slob(b, units, sp->freelist);
    sp->freelist = b;
} else {
    prev = sp->freelist;
    next = slob_next(prev);
    while (b > next) {
        prev = next;
        next = slob_next(prev);
    }

    if (!slob_last(prev) && b + units == next) {
        units += slob_units(next);
        set_slob(b, units, slob_next(next));
    } else
        set_slob(b, units, next);

    if (prev + slob_units(prev) == b) {
        units = slob_units(b) + slob_units(prev);
        set_slob(prev, units, slob_next(b));
    } else
        set_slob(prev, slob_units(prev), b);
}
out:
spin_unlock_irqrestore(&slob_lock, flags);
}


static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
{
unsigned int *m;
int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
void *ret;

gfp &= gfp_allowed_mask;

lockdep_trace_alloc(gfp);

if (size < PAGE_SIZE - align) {
    if (!size)
        return ZERO_SIZE_PTR;

    m = slob_alloc(size + align, gfp, align, node);

    if (!m)
        return NULL;
    *m = size;
    ret = (void *)m + align;

    trace_kmalloc_node(caller, ret,
               size, size + align, gfp, node);
} else {
    unsigned int order = get_order(size);

    if (likely(order))
        gfp |= __GFP_COMP;
    ret = slob_new_pages(gfp, order, node);

    trace_kmalloc_node(caller, ret,
               size, PAGE_SIZE << order, gfp, node);
}

kmemleak_alloc(ret, size, 1, gfp);
return ret;
 }

void *__kmalloc(size_t size, gfp_t gfp)
{
return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
}
EXPORT_SYMBOL(__kmalloc);

#ifdef CONFIG_TRACING
void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
{
return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
}

#ifdef CONFIG_NUMA
void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
                int node, unsigned long caller)
{
return __do_kmalloc_node(size, gfp, node, caller);
}
#endif
#endif

void kfree(const void *block)
{
struct page *sp;

trace_kfree(_RET_IP_, block);

if (unlikely(ZERO_OR_NULL_PTR(block)))
    return;
kmemleak_free(block);

sp = virt_to_page(block);
if (PageSlab(sp)) {
    int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
    unsigned int *m = (unsigned int *)(block - align);
    slob_free(m, *m + align);
} else
    __free_pages(sp, compound_order(sp));
}
EXPORT_SYMBOL(kfree);

size_t ksize(const void *block)
{
struct page *sp;
int align;
unsigned int *m;

BUG_ON(!block);
if (unlikely(block == ZERO_SIZE_PTR))
    return 0;

sp = virt_to_page(block);
if (unlikely(!PageSlab(sp)))
    return PAGE_SIZE << compound_order(sp);

align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
m = (unsigned int *)(block - align);
return SLOB_UNITS(*m) * SLOB_UNIT;
}
EXPORT_SYMBOL(ksize);

int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
{
if (flags & SLAB_DESTROY_BY_RCU) {
    /* leave room for rcu footer at the end of object */
    c->size += sizeof(struct slob_rcu);
}
c->flags = flags;
return 0;
}

void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
{
void *b;

flags &= gfp_allowed_mask;

lockdep_trace_alloc(flags);

if (c->size < PAGE_SIZE) {
    b = slob_alloc(c->size, flags, c->align, node);
    trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
                    SLOB_UNITS(c->size) * SLOB_UNIT,
                    flags, node);
} else {
    b = slob_new_pages(flags, get_order(c->size), node);
    trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
                    PAGE_SIZE << get_order(c->size),
                    flags, node);
}

if (b && c->ctor)
    c->ctor(b);

kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
return b;
 }
  EXPORT_SYMBOL(slob_alloc_node);

  void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  {
return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
  }
   EXPORT_SYMBOL(kmem_cache_alloc);

  #ifdef CONFIG_NUMA
  void *__kmalloc_node(size_t size, gfp_t gfp, int node)
  {
return __do_kmalloc_node(size, gfp, node, _RET_IP_);
   }
   EXPORT_SYMBOL(__kmalloc_node);

 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
  {
return slob_alloc_node(cachep, gfp, node);  
   }
   EXPORT_SYMBOL(kmem_cache_alloc_node);
   #endif

static void __kmem_cache_free(void *b, int size)
{
if (size < PAGE_SIZE)
    slob_free(b, size);
else
    slob_free_pages(b, get_order(size));
}

static void kmem_rcu_free(struct rcu_head *head)
{
struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));

__kmem_cache_free(b, slob_rcu->size);
 }

 void kmem_cache_free(struct kmem_cache *c, void *b)
 {
kmemleak_free_recursive(b, c->flags);
if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
    struct slob_rcu *slob_rcu;
    slob_rcu = b + (c->size - sizeof(struct slob_rcu));
    slob_rcu->size = c->size;
    call_rcu(&slob_rcu->head, kmem_rcu_free);
} else {
    __kmem_cache_free(b, c->size);
}

trace_kmem_cache_free(_RET_IP_, b);
   }
  EXPORT_SYMBOL(kmem_cache_free);

int __kmem_cache_shutdown(struct kmem_cache *c)
{
return 0;
  }

int kmem_cache_shrink(struct kmem_cache *d)
{
return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

struct kmem_cache kmem_cache_boot = {
.name = "kmem_cache",
.size = sizeof(struct kmem_cache),
.flags = SLAB_PANIC,
.align = ARCH_KMALLOC_MINALIGN,
  };

void __init kmem_cache_init(void)
{
kmem_cache = &kmem_cache_boot;
slab_state = UP;
 }

 void __init kmem_cache_init_late(void)
  {
slab_state = FULL;
   }

0 个答案:

没有答案