是否有可在iPhone上使用的压缩API?我们正在为我们的iPhone应用程序构建一些RESTful Web服务,但我们希望压缩至少一些对话以提高效率。
我不关心格式(ZIP,LHA,等等)是什么,并且它不需要是安全的。
一些受访者指出服务器可以压缩其输出,而iPhone可以消耗它。我们的情景正好相反。我们将压缩内容发布到 Web服务。我们并不关心压缩的方式。
答案 0 :(得分:44)
如果您将对话的数据存储在NSData对象中,CocoaDev wiki上的人员发布了NSData category,它将gzip和zlib压缩/解压缩作为简单方法添加。这些在my iPhone application中对我有用。
由于上面的链接在CocoaDev wiki移动到新主机时已经死了,我在下面全部复制了这个类别。
接口:
@interface NSData (NSDataExtension)
// Returns range [start, null byte), or (NSNotFound, 0).
- (NSRange) rangeOfNullTerminatedBytesFrom:(int)start;
// Canonical Base32 encoding/decoding.
+ (NSData *) dataWithBase32String:(NSString *)base32;
- (NSString *) base32String;
// COBS is an encoding that eliminates 0x00.
- (NSData *) encodeCOBS;
- (NSData *) decodeCOBS;
// ZLIB
- (NSData *) zlibInflate;
- (NSData *) zlibDeflate;
// GZIP
- (NSData *) gzipInflate;
- (NSData *) gzipDeflate;
//CRC32
- (unsigned int)crc32;
// Hash
- (NSData*) md5Digest;
- (NSString*) md5DigestString;
- (NSData*) sha1Digest;
- (NSString*) sha1DigestString;
- (NSData*) ripemd160Digest;
- (NSString*) ripemd160DigestString;
@end
实现:
#import "NSData+CocoaDevUsersAdditions.h"
#include <zlib.h>
#include <openssl/md5.h>
#include <openssl/sha.h>
#include <openssl/ripemd.h>
@implementation NSData (NSDataExtension)
// Returns range [start, null byte), or (NSNotFound, 0).
- (NSRange) rangeOfNullTerminatedBytesFrom:(int)start
{
const Byte *pdata = [self bytes];
int len = [self length];
if (start < len)
{
const Byte *end = memchr (pdata + start, 0x00, len - start);
if (end != NULL) return NSMakeRange (start, end - (pdata + start));
}
return NSMakeRange (NSNotFound, 0);
}
+ (NSData *) dataWithBase32String:(NSString *)encoded
{
/* First valid character that can be indexed in decode lookup table */
static int charDigitsBase = '2';
/* Lookup table used to decode() characters in encoded strings */
static int charDigits[] =
{ 26,27,28,29,30,31,-1,-1,-1,-1,-1,-1,-1,-1 // 23456789:;<=>?
,-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14 // @ABCDEFGHIJKLMNO
,15,16,17,18,19,20,21,22,23,24,25,-1,-1,-1,-1,-1 // PQRSTUVWXYZ[\]^_
,-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14 // `abcdefghijklmno
,15,16,17,18,19,20,21,22,23,24,25 // pqrstuvwxyz
};
if (! [encoded canBeConvertedToEncoding:NSASCIIStringEncoding]) return nil;
const char *chars = [encoded cStringUsingEncoding:NSASCIIStringEncoding]; // avoids using characterAtIndex.
int charsLen = [encoded lengthOfBytesUsingEncoding:NSASCIIStringEncoding];
// Note that the code below could detect non canonical Base32 length within the loop. However canonical Base32 length can be tested before entering the loop.
// A canonical Base32 length modulo 8 cannot be:
// 1 (aborts discarding 5 bits at STEP n=0 which produces no byte),
// 3 (aborts discarding 7 bits at STEP n=2 which produces no byte),
// 6 (aborts discarding 6 bits at STEP n=1 which produces no byte).
switch (charsLen & 7) { // test the length of last subblock
case 1: // 5 bits in subblock: 0 useful bits but 5 discarded
case 3: // 15 bits in subblock: 8 useful bits but 7 discarded
case 6: // 30 bits in subblock: 24 useful bits but 6 discarded
return nil; // non-canonical length
}
int charDigitsLen = sizeof(charDigits);
int bytesLen = (charsLen * 5) >> 3;
Byte bytes[bytesLen];
int bytesOffset = 0, charsOffset = 0;
// Also the code below does test that other discarded bits
// (1 to 4 bits at end) are effectively 0.
while (charsLen > 0)
{
int digit, lastDigit;
// STEP n = 0: Read the 1st Char in a 8-Chars subblock
// Leave 5 bits, asserting there's another encoding Char
if ((digit = (int)chars[charsOffset] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
return nil; // invalid character
lastDigit = digit << 3;
// STEP n = 5: Read the 2nd Char in a 8-Chars subblock
// Insert 3 bits, leave 2 bits, possibly trailing if no more Char
if ((digit = (int)chars[charsOffset + 1] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
return nil; // invalid character
bytes[bytesOffset] = (Byte)((digit >> 2) | lastDigit);
lastDigit = (digit & 3) << 6;
if (charsLen == 2) {
if (lastDigit != 0) return nil; // non-canonical end
break; // discard the 2 trailing null bits
}
// STEP n = 2: Read the 3rd Char in a 8-Chars subblock
// Leave 7 bits, asserting there's another encoding Char
if ((digit = (int)chars[charsOffset + 2] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
return nil; // invalid character
lastDigit |= (Byte)(digit << 1);
// STEP n = 7: Read the 4th Char in a 8-chars Subblock
// Insert 1 bit, leave 4 bits, possibly trailing if no more Char
if ((digit = (int)chars[charsOffset + 3] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
return nil; // invalid character
bytes[bytesOffset + 1] = (Byte)((digit >> 4) | lastDigit);
lastDigit = (Byte)((digit & 15) << 4);
if (charsLen == 4) {
if (lastDigit != 0) return nil; // non-canonical end
break; // discard the 4 trailing null bits
}
// STEP n = 4: Read the 5th Char in a 8-Chars subblock
// Insert 4 bits, leave 1 bit, possibly trailing if no more Char
if ((digit = (int)chars[charsOffset + 4] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
return nil; // invalid character
bytes[bytesOffset + 2] = (Byte)((digit >> 1) | lastDigit);
lastDigit = (Byte)((digit & 1) << 7);
if (charsLen == 5) {
if (lastDigit != 0) return nil; // non-canonical end
break; // discard the 1 trailing null bit
}
// STEP n = 1: Read the 6th Char in a 8-Chars subblock
// Leave 6 bits, asserting there's another encoding Char
if ((digit = (int)chars[charsOffset + 5] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
return nil; // invalid character
lastDigit |= (Byte)(digit << 2);
// STEP n = 6: Read the 7th Char in a 8-Chars subblock
// Insert 2 bits, leave 3 bits, possibly trailing if no more Char
if ((digit = (int)chars[charsOffset + 6] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
return nil; // invalid character
bytes[bytesOffset + 3] = (Byte)((digit >> 3) | lastDigit);
lastDigit = (Byte)((digit & 7) << 5);
if (charsLen == 7) {
if (lastDigit != 0) return nil; // non-canonical end
break; // discard the 3 trailing null bits
}
// STEP n = 3: Read the 8th Char in a 8-Chars subblock
// Insert 5 bits, leave 0 bit, next encoding Char may not exist
if ((digit = (int)chars[charsOffset + 7] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
return nil; // invalid character
bytes[bytesOffset + 4] = (Byte)(digit | lastDigit);
//// This point is always reached for chars.length multiple of 8
charsOffset += 8;
bytesOffset += 5;
charsLen -= 8;
}
// On loop exit, discard the n trailing null bits
return [NSData dataWithBytes:bytes length:sizeof(bytes)];
}
- (NSString *) base32String
{
/* Lookup table used to canonically encode() groups of data bits */
static char canonicalChars[] =
{ 'A','B','C','D','E','F','G','H','I','J','K','L','M' // 00..12
,'N','O','P','Q','R','S','T','U','V','W','X','Y','Z' // 13..25
,'2','3','4','5','6','7' // 26..31
};
const Byte *bytes = [self bytes];
int bytesOffset = 0, bytesLen = [self length];
int charsOffset = 0, charsLen = ((bytesLen << 3) + 4) / 5;
char chars[charsLen];
while (bytesLen != 0) {
int digit, lastDigit;
// INVARIANTS FOR EACH STEP n in [0..5[; digit in [0..31[;
// The remaining n bits are already aligned on top positions
// of the 5 least bits of digit, the other bits are 0.
////// STEP n = 0: insert new 5 bits, leave 3 bits
digit = bytes[bytesOffset] & 255;
chars[charsOffset] = canonicalChars[digit >> 3];
lastDigit = (digit & 7) << 2;
if (bytesLen == 1) { // put the last 3 bits
chars[charsOffset + 1] = canonicalChars[lastDigit];
break;
}
////// STEP n = 3: insert 2 new bits, then 5 bits, leave 1 bit
digit = bytes[bytesOffset + 1] & 255;
chars[charsOffset + 1] = canonicalChars[(digit >> 6) | lastDigit];
chars[charsOffset + 2] = canonicalChars[(digit >> 1) & 31];
lastDigit = (digit & 1) << 4;
if (bytesLen == 2) { // put the last 1 bit
chars[charsOffset + 3] = canonicalChars[lastDigit];
break;
}
////// STEP n = 1: insert 4 new bits, leave 4 bit
digit = bytes[bytesOffset + 2] & 255;
chars[charsOffset + 3] = canonicalChars[(digit >> 4) | lastDigit];
lastDigit = (digit & 15) << 1;
if (bytesLen == 3) { // put the last 1 bits
chars[charsOffset + 4] = canonicalChars[lastDigit];
break;
}
////// STEP n = 4: insert 1 new bit, then 5 bits, leave 2 bits
digit = bytes[bytesOffset + 3] & 255;
chars[charsOffset + 4] = canonicalChars[(digit >> 7) | lastDigit];
chars[charsOffset + 5] = canonicalChars[(digit >> 2) & 31];
lastDigit = (digit & 3) << 3;
if (bytesLen == 4) { // put the last 2 bits
chars[charsOffset + 6] = canonicalChars[lastDigit];
break;
}
////// STEP n = 2: insert 3 new bits, then 5 bits, leave 0 bit
digit = bytes[bytesOffset + 4] & 255;
chars[charsOffset + 6] = canonicalChars[(digit >> 5) | lastDigit];
chars[charsOffset + 7] = canonicalChars[digit & 31];
//// This point is always reached for bytes.length multiple of 5
bytesOffset += 5;
charsOffset += 8;
bytesLen -= 5;
}
return [NSString stringWithCString:chars length:sizeof(chars)];
}
#define FinishBlock(X) \
(*code_ptr = (X), \
code_ptr = dst++, \
code = 0x01)
- (NSData *) encodeCOBS
{
if ([self length] == 0) return self;
NSMutableData *encoded = [NSMutableData dataWithLength:([self length] + [self length] / 254 + 1)];
unsigned char *dst = [encoded mutableBytes];
const unsigned char *ptr = [self bytes];
unsigned long length = [self length];
const unsigned char *end = ptr + length;
unsigned char *code_ptr = dst++;
unsigned char code = 0x01;
while (ptr < end)
{
if (*ptr == 0) FinishBlock(code);
else
{
*dst++ = *ptr;
code++;
if (code == 0xFF) FinishBlock(code);
}
ptr++;
}
FinishBlock(code);
[encoded setLength:((Byte *)dst - (Byte *)[encoded mutableBytes])];
return [NSData dataWithData:encoded];
}
- (NSData *) decodeCOBS
{
if ([self length] == 0) return self;
const Byte *ptr = [self bytes];
unsigned length = [self length];
NSMutableData *decoded = [NSMutableData dataWithLength:length];
Byte *dst = [decoded mutableBytes];
Byte *basedst = dst;
const unsigned char *end = ptr + length;
while (ptr < end)
{
int i, code = *ptr++;
for (i=1; i<code; i++) *dst++ = *ptr++;
if (code < 0xFF) *dst++ = 0;
}
[decoded setLength:(dst - basedst)];
return [NSData dataWithData:decoded];
}
- (NSData *)zlibInflate
{
if ([self length] == 0) return self;
unsigned full_length = [self length];
unsigned half_length = [self length] / 2;
NSMutableData *decompressed = [NSMutableData dataWithLength: full_length + half_length];
BOOL done = NO;
int status;
z_stream strm;
strm.next_in = (Bytef *)[self bytes];
strm.avail_in = [self length];
strm.total_out = 0;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
if (inflateInit (&strm) != Z_OK) return nil;
while (!done)
{
// Make sure we have enough room and reset the lengths.
if (strm.total_out >= [decompressed length])
[decompressed increaseLengthBy: half_length];
strm.next_out = [decompressed mutableBytes] + strm.total_out;
strm.avail_out = [decompressed length] - strm.total_out;
// Inflate another chunk.
status = inflate (&strm, Z_SYNC_FLUSH);
if (status == Z_STREAM_END) done = YES;
else if (status != Z_OK) break;
}
if (inflateEnd (&strm) != Z_OK) return nil;
// Set real length.
if (done)
{
[decompressed setLength: strm.total_out];
return [NSData dataWithData: decompressed];
}
else return nil;
}
- (NSData *)zlibDeflate
{
if ([self length] == 0) return self;
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.total_out = 0;
strm.next_in=(Bytef *)[self bytes];
strm.avail_in = [self length];
// Compresssion Levels:
// Z_NO_COMPRESSION
// Z_BEST_SPEED
// Z_BEST_COMPRESSION
// Z_DEFAULT_COMPRESSION
if (deflateInit(&strm, Z_DEFAULT_COMPRESSION) != Z_OK) return nil;
NSMutableData *compressed = [NSMutableData dataWithLength:16384]; // 16K chuncks for expansion
do {
if (strm.total_out >= [compressed length])
[compressed increaseLengthBy: 16384];
strm.next_out = [compressed mutableBytes] + strm.total_out;
strm.avail_out = [compressed length] - strm.total_out;
deflate(&strm, Z_FINISH);
} while (strm.avail_out == 0);
deflateEnd(&strm);
[compressed setLength: strm.total_out];
return [NSData dataWithData: compressed];
}
- (NSData *)gzipInflate
{
if ([self length] == 0) return self;
unsigned full_length = [self length];
unsigned half_length = [self length] / 2;
NSMutableData *decompressed = [NSMutableData dataWithLength: full_length + half_length];
BOOL done = NO;
int status;
z_stream strm;
strm.next_in = (Bytef *)[self bytes];
strm.avail_in = [self length];
strm.total_out = 0;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
if (inflateInit2(&strm, (15+32)) != Z_OK) return nil;
while (!done)
{
// Make sure we have enough room and reset the lengths.
if (strm.total_out >= [decompressed length])
[decompressed increaseLengthBy: half_length];
strm.next_out = [decompressed mutableBytes] + strm.total_out;
strm.avail_out = [decompressed length] - strm.total_out;
// Inflate another chunk.
status = inflate (&strm, Z_SYNC_FLUSH);
if (status == Z_STREAM_END) done = YES;
else if (status != Z_OK) break;
}
if (inflateEnd (&strm) != Z_OK) return nil;
// Set real length.
if (done)
{
[decompressed setLength: strm.total_out];
return [NSData dataWithData: decompressed];
}
else return nil;
}
- (NSData *)gzipDeflate
{
if ([self length] == 0) return self;
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.total_out = 0;
strm.next_in=(Bytef *)[self bytes];
strm.avail_in = [self length];
// Compresssion Levels:
// Z_NO_COMPRESSION
// Z_BEST_SPEED
// Z_BEST_COMPRESSION
// Z_DEFAULT_COMPRESSION
if (deflateInit2(&strm, Z_DEFAULT_COMPRESSION, Z_DEFLATED, (15+16), 8, Z_DEFAULT_STRATEGY) != Z_OK) return nil;
NSMutableData *compressed = [NSMutableData dataWithLength:16384]; // 16K chunks for expansion
do {
if (strm.total_out >= [compressed length])
[compressed increaseLengthBy: 16384];
strm.next_out = [compressed mutableBytes] + strm.total_out;
strm.avail_out = [compressed length] - strm.total_out;
deflate(&strm, Z_FINISH);
} while (strm.avail_out == 0);
deflateEnd(&strm);
[compressed setLength: strm.total_out];
return [NSData dataWithData:compressed];
}
// --------------------------------CRC32-------------------------------
static const unsigned long crc32table[] =
{
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};
- (unsigned int)crc32
{
unsigned int crcval;
unsigned int x, y;
const void *bytes;
unsigned int max;
bytes = [self bytes];
max = [self length];
crcval = 0xffffffff;
for (x = 0, y = max; x < y; x++) {
crcval = ((crcval >> 8) & 0x00ffffff) ^ crc32table[(crcval ^ (*((unsigned char *)bytes + x))) & 0xff];
}
return crcval ^ 0xffffffff;
}
// Hash function, by [[DamienBob]]
#define HEComputeDigest(method) \
method##_CTX ctx; \
unsigned char digest[method##_DIGEST_LENGTH]; \
method##_Init(&ctx); \
method##_Update(&ctx, [self bytes], [self length]); \
method##_Final(digest, &ctx);
#define HEComputeDigestNSData(method) \
HEComputeDigest(method) \
return [NSData dataWithBytes:digest length:method##_DIGEST_LENGTH];
#define HEComputeDigestNSString(method) \
static char __HEHexDigits[] = "0123456789abcdef"; \
unsigned char digestString[2*method##_DIGEST_LENGTH];\
unsigned int i; \
HEComputeDigest(method) \
for(i=0; i<method##_DIGEST_LENGTH; i++) { \
digestString[2*i] = __HEHexDigits[digest[i] >> 4]; \
digestString[2*i+1] = __HEHexDigits[digest[i] & 0x0f];\
} \
return [NSString stringWithCString:(char *)digestString length:2*method##_DIGEST_LENGTH];
#define SHA1_CTX SHA_CTX
#define SHA1_DIGEST_LENGTH SHA_DIGEST_LENGTH
- (NSData*) md5Digest
{
HEComputeDigestNSData(MD5);
}
- (NSString*) md5DigestString
{
HEComputeDigestNSString(MD5);
}
- (NSData*) sha1Digest
{
HEComputeDigestNSData(SHA1);
}
- (NSString*) sha1DigestString
{
HEComputeDigestNSString(SHA1);
}
- (NSData*) ripemd160Digest
{
HEComputeDigestNSData(RIPEMD160);
}
- (NSString*) ripemd160DigestString
{
HEComputeDigestNSString(RIPEMD160);
}
@end
答案 1 :(得分:12)
zlib和bzip2可用。你可以随时添加其他内容,只要它们(通常)在OS X下编译即可。
对于最小的文件大小,bzip2是更好的选择,但需要更多的CPU能力来压缩和解压缩。
此外,由于您正在与Web服务进行通信,因此您可能不需要做太多事情。 NSURLRequest 在服务器响应中透明地接受gzip编码。
答案 2 :(得分:8)
Apple内置的libcompression现在可用于iOS 9.下面显示了compress_encode_buffer的一个简短示例,用于压缩NSData。
@import Compression;
NSData *theData = [NSData dataWithContentsOfFile:[<some file> path]];
size_t theDataSize = [theData length];
const uint8_t *buf = (const uint8_t *)[theData bytes];
uint8_t *destBuf = malloc(sizeof(uint8_t) * theDataSize);
size_t compressedSize = compression_encode_buffer(destBuf, theDataSize, buf, theDataSize, NULL, COMPRESSION_LZFSE);
self.<NSData item> = [NSData dataWithBytes:destBuf length:compressedSize];
NSLog(@"originalsize:%zu compressed:%zu", theDataSize, compressedSize);
free(destBuf);
有许多不同的算法可供选择:
支持块压缩或流压缩。
请参阅https://developer.apple.com/library/mac/documentation/Performance/Reference/Compression/
答案 3 :(得分:4)
如果您只有压缩数据且知道未压缩的大小,则可以使用:
#import "zlib.h"
int datal = [zipedData length];
Bytef *buffer[uncompressedSize];
Bytef *dataa[datal];
[zipedData getBytes:dataa];
Long *ld;
uLong sl = datal;
*ld = uncompressedSize;
if(uncompress(buffer, ld, dataa, sl) == Z_OK)
{
NSData *uncompressedData = [NSData dataWithBytes:buffer length:uncompressedSize];
NSString *txtFile = [[NSString alloc] initWithData:uncompressedData encoding:NSUTF8StringEncoding];
}
答案 4 :(得分:1)
我相信手机上有zlib可用。
答案 5 :(得分:1)
相信我最好的选择是使用ZipArchive,请参阅:How to decompress an AES-256 encrypted Zip file?
如果需要,随时准备提供帮助。
答案 6 :(得分:1)
Objective-Zip是另一种选择。看到这些优秀的instructions。
注意我必须使用XCode-&gt; Edit-&gt; Refactor-&gt;转换为Objective C ARC将源代码转换为使用ARC。
答案 7 :(得分:0)
NSURL表示它支持gzip编码,因此除了让RESTful Web服务在适当的时候返回gzip编码内容之外,您不必做任何其他事情。所有解码都将在封面下完成。