将时间字符串(Hour:Min:Sec.Millsecs)快速转换为浮点数

时间:2014-04-11 20:47:50

标签: python datetime csv numpy pandas

我使用pandas导入一个csv文件(大约一百万行,5列),其中包含一列时间戳(逐行增加),格式为Hour:Min:Sec.Millsecs,例如

11:52:55.162

以及其他一些带浮点数的列。我需要将timestamp列转换为浮点数(例如以秒为单位)。到目前为止我正在使用

pandas.read_csv  

获取数据帧df,然后将其转换为numpy数组

df=np.array(df)

以上所有作品都很棒且非常快。但是,我使用datetime.strptime(第0列是时间戳)

df[:,0]=[(datetime.strptime(str(d),'%H:%M:%S.%f')).total_seconds() for d in df[:,0]]

将时间戳转换为秒,不幸的是,结果非常缓慢。这不是所有行的迭代,而是

datetime.strptime 

是瓶颈。有没有更好的方法呢?

3 个答案:

答案 0 :(得分:3)

这里,使用timedeltas

创建示例系列

In [21]: s = pd.to_timedelta(np.arange(100000),unit='s')

In [22]: s
Out[22]: 
0    00:00:00
1    00:00:01
2    00:00:02
3    00:00:03
4    00:00:04
5    00:00:05
6    00:00:06
7    00:00:07
8    00:00:08
9    00:00:09
10   00:00:10
11   00:00:11
12   00:00:12
13   00:00:13
14   00:00:14
...
99985   1 days, 03:46:25
99986   1 days, 03:46:26
99987   1 days, 03:46:27
99988   1 days, 03:46:28
99989   1 days, 03:46:29
99990   1 days, 03:46:30
99991   1 days, 03:46:31
99992   1 days, 03:46:32
99993   1 days, 03:46:33
99994   1 days, 03:46:34
99995   1 days, 03:46:35
99996   1 days, 03:46:36
99997   1 days, 03:46:37
99998   1 days, 03:46:38
99999   1 days, 03:46:39
Length: 100000, dtype: timedelta64[ns]

转换为字符串以进行测试

In [23]: t = s.apply(pd.tslib.repr_timedelta64)

这些是字符串

In [24]: t.iloc[-1]
Out[24]: '1 days, 03:46:39'

除以timedelta64将其转换为秒

In [25]: pd.to_timedelta(t.iloc[-1])/np.timedelta64(1,'s')
Out[25]: 99999.0

目前使用reg-ex进行匹配,因此不能直接从字符串中快速进行匹配。

In [27]: %timeit pd.to_timedelta(t)/np.timedelta64(1,'s')
1 loops, best of 3: 1.84 s per loop

这是一个基于日期时间戳的soln

由于日期时间已经存储为int64,因此这很容易快速

创建示例系列

In [7]: s = Series(date_range('20130101',periods=1000,freq='ms'))

In [8]: s
Out[8]: 
0           2013-01-01 00:00:00
1    2013-01-01 00:00:00.001000
2    2013-01-01 00:00:00.002000
3    2013-01-01 00:00:00.003000
4    2013-01-01 00:00:00.004000
5    2013-01-01 00:00:00.005000
6    2013-01-01 00:00:00.006000
7    2013-01-01 00:00:00.007000
8    2013-01-01 00:00:00.008000
9    2013-01-01 00:00:00.009000
10   2013-01-01 00:00:00.010000
11   2013-01-01 00:00:00.011000
12   2013-01-01 00:00:00.012000
13   2013-01-01 00:00:00.013000
14   2013-01-01 00:00:00.014000
...
985   2013-01-01 00:00:00.985000
986   2013-01-01 00:00:00.986000
987   2013-01-01 00:00:00.987000
988   2013-01-01 00:00:00.988000
989   2013-01-01 00:00:00.989000
990   2013-01-01 00:00:00.990000
991   2013-01-01 00:00:00.991000
992   2013-01-01 00:00:00.992000
993   2013-01-01 00:00:00.993000
994   2013-01-01 00:00:00.994000
995   2013-01-01 00:00:00.995000
996   2013-01-01 00:00:00.996000
997   2013-01-01 00:00:00.997000
998   2013-01-01 00:00:00.998000
999   2013-01-01 00:00:00.999000
Length: 1000, dtype: datetime64[ns]

转换为ns,因为epoch / divide从epoch开始获取ms(如果你想要秒, 除以10 ** 9)

In [9]: pd.DatetimeIndex(s).asi8/10**6
Out[9]: 
array([1356998400000, 1356998400001, 1356998400002, 1356998400003,
       1356998400004, 1356998400005, 1356998400006, 1356998400007,
       1356998400008, 1356998400009, 1356998400010, 1356998400011,
       ...
       1356998400992, 1356998400993, 1356998400994, 1356998400995,
       1356998400996, 1356998400997, 1356998400998, 1356998400999])

非常快

In [12]: s = Series(date_range('20130101',periods=1000000,freq='ms'))

In [13]: %timeit pd.DatetimeIndex(s).asi8/10**6
100 loops, best of 3: 11 ms per loop

答案 1 :(得分:2)

我猜测datetime对象有很多开销 - 手动操作可能更容易:

def to_seconds(s):
    hr, min, sec = [float(x) for x in s.split(':')]
    return hr*3600 + min*60 + sec

答案 2 :(得分:0)

使用sum()enumerate() -

>>> ts = '11:52:55.162'
>>> ts1 = map(float, ts.split(':'))
>>> ts1
[11.0, 52.0, 55.162]
>>> ts2 = [60**(2-i)*n for i, n in enumerate(ts1)]
>>> ts2
[39600.0, 3120.0, 55.162]
>>> ts3 = sum(ts2)
>>> ts3
42775.162
>>> seconds = sum(60**(2-i)*n for i, n in enumerate(map(float, ts.split(':'))))
>>> seconds
42775.162
>>>