我想使用cuFFT库提供的批处理方法执行441
2D,32-by-32
FFT。变换的参数如下:
int n[2] = {32,32};
int inembed[] = {32,32};
int onembed[] = {32,32/2+1};
cufftPlanMany(&plan,2,n,inembed,1,32*32,onembed,1,32*(32/2+1),CUFFT_D2Z,441);
cufftPlanMany(&inverse_plan,2,n,onembed,1,32*32,inembed,1,32*32,CUFFT_Z2D,441);
使用上述计划进行正向和反向FFT后,我无法恢复原始数据。
有人可以建议我如何正确设置cudaPlanMany的参数吗?非常感谢提前。
顺便说一下,对我的情况使用cudaPlanMany
是最好的方法吗?
答案 0 :(得分:6)
以下是使用cufftPlanMany
在CUDA中执行批量直接和反向转换的完整示例。该示例引用float
到cufftComplex
转换并返回。直接+逆变换的最终结果是正确的,但乘法常数等于矩阵元素nRows*nCols
的总数。
#include <stdio.h>
#include <stdlib.h>
#include <cufft.h>
#include <assert.h>
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) { getchar(); exit(code); }
}
}
/*********************/
/* CUFFT ERROR CHECK */
/*********************/
static const char *_cudaGetErrorEnum(cufftResult error)
{
switch (error)
{
case CUFFT_SUCCESS:
return "CUFFT_SUCCESS";
case CUFFT_INVALID_PLAN:
return "CUFFT_INVALID_PLAN";
case CUFFT_ALLOC_FAILED:
return "CUFFT_ALLOC_FAILED";
case CUFFT_INVALID_TYPE:
return "CUFFT_INVALID_TYPE";
case CUFFT_INVALID_VALUE:
return "CUFFT_INVALID_VALUE";
case CUFFT_INTERNAL_ERROR:
return "CUFFT_INTERNAL_ERROR";
case CUFFT_EXEC_FAILED:
return "CUFFT_EXEC_FAILED";
case CUFFT_SETUP_FAILED:
return "CUFFT_SETUP_FAILED";
case CUFFT_INVALID_SIZE:
return "CUFFT_INVALID_SIZE";
case CUFFT_UNALIGNED_DATA:
return "CUFFT_UNALIGNED_DATA";
}
return "<unknown>";
}
#define cufftSafeCall(err) __cufftSafeCall(err, __FILE__, __LINE__)
inline void __cufftSafeCall(cufftResult err, const char *file, const int line)
{
if( CUFFT_SUCCESS != err) {
fprintf(stderr, "CUFFT error in file '%s', line %d\n %s\nerror %d: %s\nterminating!\n",__FILE__, __LINE__,err, \
_cudaGetErrorEnum(err)); \
cudaDeviceReset(); assert(0); \
}
}
/********/
/* MAIN */
/********/
void main() {
cufftHandle forward_plan, inverse_plan;
int batch = 3;
int rank = 2;
int nRows = 5;
int nCols = 5;
int n[2] = {nRows, nCols};
int idist = nRows*nCols;
int odist = nRows*(nCols/2+1);
int inembed[] = {nRows, nCols};
int onembed[] = {nRows, nCols/2+1};
int istride = 1;
int ostride = 1;
cufftSafeCall(cufftPlanMany(&forward_plan, rank, n, inembed, istride, idist, onembed, ostride, odist, CUFFT_R2C, batch));
float *h_in = (float*)malloc(sizeof(float)*nRows*nCols*batch);
for(int i=0; i<nRows*nCols*batch; i++) h_in[i] = 1.f;
float2* h_freq = (float2*)malloc(sizeof(float2)*nRows*(nCols/2+1)*batch);
float* d_in; gpuErrchk(cudaMalloc(&d_in, sizeof(float)*nRows*nCols*batch));
float2* d_freq; gpuErrchk(cudaMalloc(&d_freq, sizeof(float2)*nRows*(nCols/2+1)*batch));
gpuErrchk(cudaMemcpy(d_in,h_in,sizeof(float)*nRows*nCols*batch,cudaMemcpyHostToDevice));
cufftSafeCall(cufftExecR2C(forward_plan, d_in, d_freq));
gpuErrchk(cudaMemcpy(h_freq,d_freq,sizeof(float2)*nRows*(nCols/2+1)*batch,cudaMemcpyDeviceToHost));
for(int i=0; i<nRows*(nCols/2+1)*batch; i++) printf("Direct transform: %i %f %f\n",i,h_freq[i].x,h_freq[i].y);
cufftSafeCall(cufftPlanMany(&inverse_plan, rank, n, onembed, ostride, odist, inembed, istride, idist, CUFFT_C2R, batch));
cufftSafeCall(cufftExecC2R(inverse_plan, d_freq, d_in));
gpuErrchk(cudaMemcpy(h_in,d_in,sizeof(float)*nRows*nCols*batch,cudaMemcpyDeviceToHost));
for(int i=0; i<nRows*nCols*batch; i++) printf("Inverse transform: %i %f \n",i,h_in[i]);
getchar();
}