我对[R]相对较新,我正在寻找从矢量(最有可能是数字但不总是)完成频率,相对频率,累积频率,累积相对频率来计算频率分布的最佳方法。值。下面是我提出的逻辑,但对于这样的例行任务来说似乎有点多。感谢您的反馈。
x <- c(1,2,3,2,4,2,5,4,6,7,8,9)
freq <- data.frame(table(x))
relFreq <- data.frame(prop.table(table(x)))
relFreq$Relative_Freq <- relFreq$Freq
relFreq$Freq <- NULL
Cumulative_Freq <- cumsum(table(x))
z <- cbind(merge(freq, relFreq), Cumulative_Freq)
z$Cumulative_Relative_Freq <- z$Cumulative_Freq / sum(z$Freq)
print(z)
答案 0 :(得分:6)
qdap包中包含dist_tab
来执行此操作:
library(qdap)
dist_tab(x)
## interval Freq cum.Freq percent cum.percent
## 1 1 1 1 8.33 8.33
## 2 2 3 4 25.00 33.33
## 3 3 1 5 8.33 41.67
## 4 4 2 7 16.67 58.33
## 5 5 1 8 8.33 66.67
## 6 6 1 9 8.33 75.00
## 7 7 1 10 8.33 83.33
## 8 8 1 11 8.33 91.67
## 9 9 1 12 8.33 100.00
答案 1 :(得分:2)
我不知道您的确切应用,但似乎没有必要为每个重复的x值多次显示数据。如果不需要,可以避免合并
x <- c(1,2,3,2,4,2,5,4,6,7,8,9)
Freq <- table(x)
relFreq <- prop.table(Freq)
Cumulative_Freq <- cumsum(Freq)
Cumulative_Relative_Freq <- cumsum(relFreq)
data.frame(xval = names(Freq), Freq=Freq, relFreq=relFreq,
Cumulative_Freq=Cumulative_Freq,
Cumulative_Relative_Freq=Cumulative_Relative_Freq)
完成同样事情的另一种方法:
require(plyr)
x <- c(1,2,3,2,4,2,5,4,6,7,8,9)
z <- data.frame(table(x))
mutate(z, relFreq = prop.table(Freq), Cumulative_Freq = cumsum(Freq),
Cumulative_Relative_Freq = cumsum(relFreq))
答案 2 :(得分:0)
尝试fdth软件包:
library(fdth)
tb1 <- fdt(x) # The breaks are based on the Sturges criterion (by default)
summary(tb1)
# Class limits f rf rf(%) cf cf(%)
# [0.99,2.61) 4 0.33 33.33 4 33.33
# [2.61,4.23) 3 0.25 25.00 7 58.33
# [4.23,5.85) 1 0.08 8.33 8 66.67
# [5.85,7.47) 2 0.17 16.67 10 83.33
# [7.47,9.09) 2 0.17 16.67 12 100.00
tb2 <- fdt(x, start=1, end=9, h=1)
summary(tb2)
# Class limits f rf rf(%) cf cf(%)
# [1,2) 1 0.08 8.33 1 8.33
# [2,3) 3 0.25 25.00 4 33.33
# [3,4) 1 0.08 8.33 5 41.67
# [4,5) 2 0.17 16.67 7 58.33
# [5,6) 1 0.08 8.33 8 66.67
# [6,7) 1 0.08 8.33 9 75.00
# [7,8) 1 0.08 8.33 10 83.33
# [8,9) 1 0.08 8.33 11 91.67
答案 3 :(得分:0)
我发现此公式对于“频率分布”表很简单:
frequency =c(9,26,11,13,3,1,2)
# of classes
n=7
# of boundaries = all lower limits + one more
table1 =data.frame(frequency distribution)
table1
frequency distribution
1 9
2 26
3 11
4 13
5 3
6 1
7 2
答案 4 :(得分:0)
用于具有过多值的变量的频率分布 您可以折叠类中的值,
这里employrate
变量的值过大,直接values_count(normalize=True)
的频率分布没有意义
country employrate alcconsumption
0 Afghanistan 55.700001 .03
1 Albania 11.000000 7.29
2 Algeria 11.000000 .69
3 Andorra nan 10.17
4 Angola 75.699997 5.57
.. ... ... ...
208 Vietnam 71.000000 3.91
209 West Bank and Gaza 32.000000
210 Yemen, Rep. 39.000000 .2
211 Zambia 61.000000 3.56
212 Zimbabwe 66.800003 4.96
[213 rows x 3 columns]
values_count(normalize=True)
不分类的频率分布,结果长度为139(似乎无意义的频率分布):
print(gm["employrate"].value_counts(sort=False,normalize=True))
50.500000 0.005618
61.500000 0.016854
46.000000 0.011236
64.500000 0.005618
63.500000 0.005618
58.599998 0.005618
63.799999 0.011236
63.200001 0.005618
65.599998 0.005618
68.300003 0.005618
Name: employrate, Length: 139, dtype: float64
进行分类,我们将所有值都放在一定范围内。
0-10 as 1, 11-20 as 2 21-30 as 3, and so forth.
gm["employrate"]=gm["employrate"].str.strip().dropna()
gm["employrate"]=pd.to_numeric(gm["employrate"])
gm['employrate'] = np.where(
(gm['employrate'] <=10) & (gm['employrate'] > 0) , 1, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=20) & (gm['employrate'] > 10) , 1, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=30) & (gm['employrate'] > 20) , 2, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=40) & (gm['employrate'] > 30) , 3, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=50) & (gm['employrate'] > 40) , 4, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=60) & (gm['employrate'] > 50) , 5, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=70) & (gm['employrate'] > 60) , 6, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=80) & (gm['employrate'] > 70) , 7, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=90) & (gm['employrate'] > 80) , 8, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=100) & (gm['employrate'] > 90) , 9, gm['employrate']
)
print(gm["employrate"].value_counts(sort=False,normalize=True))
分类后,我们有清晰的频率分布。
在这里我们可以很容易地看到,37.64%
个国家/地区的雇用率在51-60%
之间
和11.79%
个国家/地区的雇用率在71-80%
5.000000 0.376404
7.000000 0.117978
4.000000 0.179775
6.000000 0.264045
8.000000 0.033708
3.000000 0.028090
Name: employrate, dtype: float64
或者您也可以这样做,
gm.loc[(gm['employrate'] <50) & (gm['employrate'] > 40),'employrate']=4
这里的非正式语法可以是:
<dataset>.loc[<filter1> & (<filter2>),'<variable>']='<value>'