我正在尝试使用python mapper reducer函数应用tokenizer。我有以下代码,但我一直收到错误。 reducer输出列表中的值,我将值传递给矢量化器。
from mrjob.job import MRJob
from sklearn.cross_validation import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import CountVectorizer
class bagOfWords(MRJob):
def mapper(self, _, line):
cat, phrase, phraseid, sentiment = line.split(',')
yield (cat, phraseid, sentiment), phrase
def reducer(self, keys, values):
yield keys, list(values)
#Output: ["Train", "--", "2"] ["A series of escapades demonstrating the adage that what is good for the goose", "A series", "A", "series"]
def mapper(self, keys, values):
vectorizer = CountVectorizer(min_df=0)
vectorizer.fit(values)
x = vectorizer.transform(values)
x=x.toarray()
yield keys, (x)
if __name__ == '__main__':
bagOfWords.run()
ValueError:空词汇;也许这些文件只包含停用词
感谢您提供任何帮助。
答案 0 :(得分:0)
CountVectorizer
是有状态的:您需要在完整数据集上安装相同的一个实例来构建词汇表,因此这不适合并行处理。
相反,您可以使用无状态的HashingVectorizer
(无需适合,您可以直接调用transform
。