我想使用Python以与我在R中相同的方式预处理文档语料库。例如,给定初始语料库corpus
,我想最终得到一个对应的预处理语料库使用以下R代码生成的那个:
library(tm)
library(SnowballC)
corpus = tm_map(corpus, tolower)
corpus = tm_map(corpus, removePunctuation)
corpus = tm_map(corpus, removeWords, c("myword", stopwords("english")))
corpus = tm_map(corpus, stemDocument)
在Python中是否有一个简单或直接 - 最好是预先建立的方法?有没有办法确保完全相同的结果?
例如,我想预处理
@Apple ear pods令人惊叹!我听到入耳式耳机的最佳声音 曾经有过!
到
ear pod amaz最好的声音inear headphon我曾经
答案 0 :(得分:3)
在预处理步骤中使nltk
和tm
之间的内容完全相同似乎很棘手,因此我认为最好的方法是使用rpy2
在R中运行预处理将结果拉入python:
import rpy2.robjects as ro
preproc = [x[0] for x in ro.r('''
tweets = read.csv("tweets.csv", stringsAsFactors=FALSE)
library(tm)
library(SnowballC)
corpus = Corpus(VectorSource(tweets$Tweet))
corpus = tm_map(corpus, tolower)
corpus = tm_map(corpus, removePunctuation)
corpus = tm_map(corpus, removeWords, c("apple", stopwords("english")))
corpus = tm_map(corpus, stemDocument)''')]
然后,您可以将其加载到scikit-learn
中 - 要使CountVectorizer
和DocumentTermMatrix
之间的内容匹配,您唯一需要做的就是删除条款长度小于3:
from sklearn.feature_extraction.text import CountVectorizer
def mytokenizer(x):
return [y for y in x.split() if len(y) > 2]
# Full document-term matrix
cv = CountVectorizer(tokenizer=mytokenizer)
X = cv.fit_transform(preproc)
X
# <1181x3289 sparse matrix of type '<type 'numpy.int64'>'
# with 8980 stored elements in Compressed Sparse Column format>
# Sparse terms removed
cv2 = CountVectorizer(tokenizer=mytokenizer, min_df=0.005)
X2 = cv2.fit_transform(preproc)
X2
# <1181x309 sparse matrix of type '<type 'numpy.int64'>'
# with 4669 stored elements in Compressed Sparse Column format>
让我们验证这与R匹配:
tweets = read.csv("tweets.csv", stringsAsFactors=FALSE)
library(tm)
library(SnowballC)
corpus = Corpus(VectorSource(tweets$Tweet))
corpus = tm_map(corpus, tolower)
corpus = tm_map(corpus, removePunctuation)
corpus = tm_map(corpus, removeWords, c("apple", stopwords("english")))
corpus = tm_map(corpus, stemDocument)
dtm = DocumentTermMatrix(corpus)
dtm
# A document-term matrix (1181 documents, 3289 terms)
#
# Non-/sparse entries: 8980/3875329
# Sparsity : 100%
# Maximal term length: 115
# Weighting : term frequency (tf)
sparse = removeSparseTerms(dtm, 0.995)
sparse
# A document-term matrix (1181 documents, 309 terms)
#
# Non-/sparse entries: 4669/360260
# Sparsity : 99%
# Maximal term length: 20
# Weighting : term frequency (tf)
如您所见,现在两种方法之间存储的元素和术语的数量完全匹配。
答案 1 :(得分:1)
CountVectorizer
和TfidfVectorizer
可以按docs中的说明进行自定义。特别是,您需要编写自定义标记生成器,这是一个获取文档并返回术语列表的函数。使用NLTK:
import nltk.corpus.stopwords
import nltk.stem
def smart_tokenizer(doc):
doc = doc.lower()
doc = re.findall(r'\w+', doc, re.UNICODE)
return [nltk.stem.PorterStemmer().stem(term)
for term in doc
if term not in nltk.corpus.stopwords.words('english')]
演示:
>>> v = CountVectorizer(tokenizer=smart_tokenizer)
>>> v.fit_transform([doc]).toarray()
array([[1, 1, 1, 2, 1, 1, 1, 1, 1]])
>>> from pprint import pprint
>>> pprint(v.vocabulary_)
{u'amaz': 0,
u'appl': 1,
u'best': 2,
u'ear': 3,
u'ever': 4,
u'headphon': 5,
u'pod': 6,
u'sound': 7,
u've': 8}
(我链接到的示例实际上使用一个类来缓存引理器,但函数也可以工作。)