我认为从简单的代码中理解我的问题相当简单,但另一方面,我并不确定答案!直觉上,我想要做的是给出一个类型列表[*]和一些依赖类型Foo,生成类型[Foo *]。也就是说,我想要映射'基类型的依赖类型。
首先,我正在使用以下扩展程序
{-# LANGUAGE TypeOperators,DataKinds,GADTs,TypeFamilies #-}
我们说我们有一些依赖类型
class Distribution m where
type SampleSpace m :: *
表征某些概率分布的样本空间。如果我们想要在可能异构的值上定义产品分布,我们可能会编写类似
的内容data PDistribution (ms :: [*]) where
DNil :: PDistribution ('[])
(:*:) :: Distribution m => m -> (PDistribution ms) -> PDistribution (m ': ms)
并用
补充它data PSampleSpace (m :: [*]) where
SSNil :: PSampleSpace ('[])
(:+:) :: Distribution m => SampleSpace m -> (PSampleSpace ms) -> PSampleSpace (m ': ms)
以便我们定义
instance Distribution (PDistribution ms) where
type SampleSpace (PDistribution ms) = PSampleSpace ms
现在这一切都相当不错,只是PSampleSpace的类型会导致一些问题。特别是,如果我们想直接构建PSampleSpace,例如
ss = True :+: 3.0 :+: SNil
我们必须明确地给它一组分布来生成它或者遇到单态限制。此外,由于两个发行版当然可以共享一个SampleSpace(Normals和Exponentials都描述双打),因此选择一个发行版来修复类型似乎很愚蠢。我真正想定义的是定义一个简单的异构列表
data HList (xs :: [*]) where
Nil :: HList ('[])
(:+:) :: x -> (HList xs) -> HList (x ': xs)
并写下类似
的内容instance Distribution (PDistribution (m ': ms)) where
type SampleSpace (PDistribution (m ': ms)) = HList (SampleSpace m ': mxs)
其中mxs已经以某种方式转换为我想要的SampleSpaces列表。当然,最后一点代码不起作用,我也不知道如何解决它。干杯!
修改
正如我提出的解决方案问题的一个可靠例子,假设我有班级
class Distribution m => Generative m where
generate :: m -> Rand (SampleSpace m)
即使它看起来应该键入检查,以下
instance Generative (HList '[]) where
generate Nil = return Nil
instance (Generative m, Generative (HList ms)) => Generative (HList (m ': ms)) where
generate (m :+: ms) = do
x <- generate m
(x :+:) <$> generate ms
没有。 GHC抱怨它
Could not deduce (SampleSpace (HList xs) ~ HList (SampleSpaces xs))
现在我可以使用我的PDistribution GADT,因为我在子发行版上强制所需的类型类。
最终修改
所以有几种方法可以解决这个问题。 TypeList是最常用的。我的问题不仅仅是在这一点上回答。
答案 0 :(得分:1)
为什么要将分发产品列入清单?普通元组(两种类型的产品)是否可以代替:*:
?
{-# LANGUAGE TypeOperators,TypeFamilies #-}
class Distribution m where
type SampleSpace m :: *
data (:+:) a b = ProductSampleSpaceWhatever
deriving (Show)
instance (Distribution m1, Distribution m2) => Distribution (m1, m2) where
type SampleSpace (m1, m2) = SampleSpace m1 :+: SampleSpace m2
data NormalDistribution = NormalDistributionWhatever
instance Distribution NormalDistribution where
type SampleSpace NormalDistribution = Doubles
data ExponentialDistribution = ExponentialDistributionWhatever
instance Distribution ExponentialDistribution where
type SampleSpace ExponentialDistribution = Doubles
data Doubles = DoublesSampleSpaceWhatever
example :: SampleSpace (NormalDistribution, ExponentialDistribution)
example = ProductSampleSpaceWhatever
example' :: Doubles :+: Doubles
example' = example
-- Just to prove it works:
main = print example'
元组树和列表之间的区别在于元组的树是类似岩浆的(那里是二元运算符),而列表是类似于monoid的(那里是二元运算符,一个标识,并且运算符是关联的)。因此,没有单一的,被挑选的DNil
是身份,而且类型并没有强制我们放弃(NormalDistribution :*: ExponentialDistribution) :*: BinaryDistribution
和NormalDistribution :*: (ExponentialDistribution :*: BinaryDistribution)
之间的差异。
修改强>
以下代码使用关联运算符TypeListConcat
和标识TypeListNil
生成类型列表。没有什么能保证不会提供TypeList
的其他实例而不是提供的两种类型。我无法使用TypeOperators
语法来处理我喜欢的所有内容。
{-# LANGUAGE TypeFamilies,MultiParamTypeClasses,FlexibleInstances,TypeOperators #-}
-- Lists of types
-- The class of things where the end of them can be replaced with something
-- The extra parameter t combined with FlexibleInstances lets us get away with essentially
-- type TypeListConcat :: * -> *
-- And instances with a free variable for the first argument
class TypeList l a where
type TypeListConcat l a :: *
typeListConcat :: l -> a -> TypeListConcat l a
-- An identity for a list of types. Nothing guarantees it is unique
data TypeListNil = TypeListNil
deriving (Show)
instance TypeList TypeListNil a where
type TypeListConcat TypeListNil a = a
typeListConcat TypeListNil a = a
-- Cons for a list of types, nothing guarantees it is unique.
data (:::) h t = (:::) h t
deriving (Show)
infixr 5 :::
instance (TypeList t a) => TypeList (h ::: t) a where
type TypeListConcat (h ::: t) a = h ::: (TypeListConcat t a)
typeListConcat (h ::: t) a = h ::: (typeListConcat t a)
-- A Distribution instance for lists of types
class Distribution m where
type SampleSpace m :: *
instance Distribution TypeListNil where
type SampleSpace TypeListNil = TypeListNil
instance (Distribution m1, Distribution m2) => Distribution (m1 ::: m2) where
type SampleSpace (m1 ::: m2) = SampleSpace m1 ::: SampleSpace m2
-- Some types and values to play with
data NormalDistribution = NormalDistributionWhatever
instance Distribution NormalDistribution where
type SampleSpace NormalDistribution = Doubles
data ExponentialDistribution = ExponentialDistributionWhatever
instance Distribution ExponentialDistribution where
type SampleSpace ExponentialDistribution = Doubles
data BinaryDistribution = BinaryDistributionWhatever
instance Distribution BinaryDistribution where
type SampleSpace BinaryDistribution = Bools
data Doubles = DoublesSampleSpaceWhatever
deriving (Show)
data Bools = BoolSampleSpaceWhatever
deriving (Show)
-- Play with them
example1 :: TypeListConcat (Doubles ::: TypeListNil) (Doubles ::: Bools ::: TypeListNil)
example1 = (DoublesSampleSpaceWhatever ::: TypeListNil) `typeListConcat` (DoublesSampleSpaceWhatever ::: BoolSampleSpaceWhatever ::: TypeListNil)
example2 :: TypeListConcat (Doubles ::: Doubles ::: TypeListNil) (Bools ::: TypeListNil)
example2 = example2
example3 :: Doubles ::: Doubles ::: Bools ::: TypeListNil
example3 = example1
example4 :: SampleSpace (NormalDistribution ::: ExponentialDistribution ::: BinaryDistribution ::: TypeListNil)
example4 = example3
main = print example4
编辑 - 使用TypeList
s
这里有一些代码与您在编辑中添加的代码类似。我无法弄清Rand
应该是什么,所以我做了别的事情。
-- Distributions with sampling
class Distribution m => Generative m where
generate :: m -> StdGen -> (SampleSpace m, StdGen)
instance Generative TypeListNil where
generate TypeListNil g = (TypeListNil, g)
instance (Generative m1, Generative m2) => Generative (m1 ::: m2) where
generate (m ::: ms) g =
let
(x, g') = generate m g
(xs, g'') = generate ms g'
in (x ::: xs, g'')
-- Distributions with modes
class Distribution m => Modal m where
modes :: m -> [SampleSpace m]
instance Modal TypeListNil where
modes TypeListNil = [TypeListNil]
instance (Modal m1, Modal m2) => Modal (m1 ::: m2) where
modes (m ::: ms) = [ x ::: xs | x <- modes m, xs <- modes ms]
答案 1 :(得分:1)
以下是DataKinds
的解决方案。我们还需要更多扩展程序,FlexibleContexts
和FlexibleInstances
。
{-# LANGUAGE TypeOperators,DataKinds,GADTs,TypeFamilies,FlexibleInstances,FlexibleContexts #-}
我们将继续使用您的Distribution
类作为依赖类型的示例
class Distribution m where
type SampleSpace m :: *
借用the TypeMap example you found,我们会
type family TypeMap (f :: * -> *) (xs :: [*]) :: [*]
type instance TypeMap t '[] = '[]
type instance TypeMap t (x ': xs) = t x ': TypeMap t xs
在类型列表中,我们希望能够TypeMap SampleSpace
。很遗憾,我们无法部分应用类型系列中的类型,因此我们将TypeMap
专门用于SampleSpace
。这里的想法是SampleSpaces = TypeMap SampleSpace
type family SampleSpaces (xs :: [*]) :: [*]
type instance SampleSpaces '[] = '[]
type instance SampleSpaces (x ': xs) = SampleSpace x ': SampleSpaces xs
我们将继续使用您的HList
,但为其添加Show
个实例:
data HList (xs :: [*]) where
Nil :: HList '[]
(:+:) :: x -> HList xs -> HList (x ': xs)
infixr 5 :+:
instance (Show x, Show (HList xs)) => Show (HList (x ': xs)) where
showsPrec p (x :+: xs) = showParen (p > plus_prec) $
showsPrec (plus_prec+1) x .
showString " :+: " .
showsPrec (plus_prec) xs
where plus_prec = 5
instance Show (HList '[]) where
show _ = "Nil"
现在我们都设置为Distribution
s的异构列表派生实例。请注意':
右侧的类型如何使用我们在上面定义的SampleSpaces
。
instance (Distribution m, Distribution (HList ms)) => Distribution (HList (m ': ms)) where
type SampleSpace (HList (m ': ms)) = HList (SampleSpace m ': SampleSpaces ms)
instance Distribution (HList '[]) where
type SampleSpace (HList '[]) = HList '[]
现在我们可以玩它并看到一堆类型是等价的
-- Some types and values to play with
data NormalDistribution = NormalDistributionWhatever
instance Distribution NormalDistribution where
type SampleSpace NormalDistribution = Doubles
data ExponentialDistribution = ExponentialDistributionWhatever
instance Distribution ExponentialDistribution where
type SampleSpace ExponentialDistribution = Doubles
data BinaryDistribution = BinaryDistributionWhatever
instance Distribution BinaryDistribution where
type SampleSpace BinaryDistribution = Bools
data Doubles = DoublesSampleSpaceWhatever
deriving (Show)
data Bools = BoolSampleSpaceWhatever
deriving (Show)
-- Play with them
example1 :: HList [Doubles, Doubles, Bools]
example1 = DoublesSampleSpaceWhatever :+: DoublesSampleSpaceWhatever :+: BoolSampleSpaceWhatever :+: Nil
example2 :: SampleSpace (HList [NormalDistribution, ExponentialDistribution, BinaryDistribution])
example2 = example1
example3 :: SampleSpace (HList [ExponentialDistribution, NormalDistribution, BinaryDistribution])
example3 = example2
main = print example3