在类型列表上映射依赖类型

时间:2014-04-01 14:26:19

标签: haskell type-families data-kinds

我认为从简单的代码中理解我的问题相当简单,但另一方面,我并不确定答案!直觉上,我想要做的是给出一个类型列表[*]和一些依赖类型Foo,生成类型[Foo *]。也就是说,我想要映射'基类型的依赖类型。

首先,我正在使用以下扩展程序

{-# LANGUAGE TypeOperators,DataKinds,GADTs,TypeFamilies #-}

我们说我们有一些依赖类型

class Distribution m where
    type SampleSpace m :: *

表征某些概率分布的样本空间。如果我们想要在可能异构的值上定义产品分布,我们可能会编写类似

的内容
data PDistribution (ms :: [*]) where
    DNil :: PDistribution ('[])
    (:*:) :: Distribution m => m -> (PDistribution ms) -> PDistribution (m ': ms)

并用

补充它
data PSampleSpace (m :: [*]) where
    SSNil :: PSampleSpace ('[])
    (:+:) :: Distribution m => SampleSpace m -> (PSampleSpace ms) -> PSampleSpace (m ': ms)

以便我们定义

instance Distribution (PDistribution ms) where
    type SampleSpace (PDistribution ms) = PSampleSpace ms

现在这一切都相当不错,只是PSampleSpace的类型会导致一些问题。特别是,如果我们想直接构建PSampleSpace,例如

ss = True :+: 3.0 :+: SNil

我们必须明确地给它一组分布来生成它或者遇到单态限制。此外,由于两个发行版当然可以共享一个SampleSpace(Normals和Exponentials都描述双打),因此选择一个发行版来修复类型似乎很愚蠢。我真正想定义的是定义一个简单的异构列表

data HList (xs :: [*]) where
    Nil :: HList ('[])
    (:+:) :: x -> (HList xs) -> HList (x ': xs)

并写下类似

的内容
instance Distribution (PDistribution (m ': ms)) where
    type SampleSpace (PDistribution (m ': ms)) = HList (SampleSpace m ': mxs)

其中mxs已经以某种方式转换为我想要的SampleSpaces列表。当然,最后一点代码不起作用,我也不知道如何解决它。干杯!

修改

正如我提出的解决方案问题的一个可靠例子,假设我有班级

class Distribution m => Generative m where
    generate :: m -> Rand (SampleSpace m)

即使它看起来应该键入检查,以下

instance Generative (HList '[]) where
    generate Nil = return Nil

instance (Generative m, Generative (HList ms)) => Generative (HList (m ': ms)) where
    generate (m :+: ms) = do
        x <- generate m
        (x :+:) <$> generate ms

没有。 GHC抱怨它

Could not deduce (SampleSpace (HList xs) ~ HList (SampleSpaces xs))

现在我可以使用我的PDistribution GADT,因为我在子发行版上强制所需的类型类。

最终修改

所以有几种方法可以解决这个问题。 TypeList是最常用的。我的问题不仅仅是在这一点上回答。

2 个答案:

答案 0 :(得分:1)

为什么要将分发产品列入清单?普通元组(两种类型的产品)是否可以代替:*:

{-# LANGUAGE TypeOperators,TypeFamilies #-}

class Distribution m where
    type SampleSpace m :: *

data (:+:) a b = ProductSampleSpaceWhatever
    deriving (Show)

instance (Distribution m1, Distribution m2) => Distribution (m1, m2) where
    type SampleSpace (m1, m2) = SampleSpace m1 :+: SampleSpace m2

data NormalDistribution = NormalDistributionWhatever

instance Distribution NormalDistribution where
    type SampleSpace NormalDistribution = Doubles

data ExponentialDistribution = ExponentialDistributionWhatever

instance Distribution ExponentialDistribution where
    type SampleSpace ExponentialDistribution = Doubles

data Doubles = DoublesSampleSpaceWhatever

example :: SampleSpace (NormalDistribution, ExponentialDistribution)
example = ProductSampleSpaceWhatever

example' :: Doubles :+: Doubles
example' = example

-- Just to prove it works:
main = print example'

元组树和列表之间的区别在于元组的树是类似岩浆的(那里是二元运算符),而列表是类似于monoid的(那里是二元运算符,一个标识,并且运算符是关联的)。因此,没有单一的,被挑选的DNil是身份,而且类型并没有强制我们放弃(NormalDistribution :*: ExponentialDistribution) :*: BinaryDistributionNormalDistribution :*: (ExponentialDistribution :*: BinaryDistribution)之间的差异。

修改

以下代码使用关联运算符TypeListConcat和标识TypeListNil生成类型列表。没有什么能保证不会提供TypeList的其他实例而不是提供的两种类型。我无法使用TypeOperators语法来处理我喜欢的所有内容。

{-# LANGUAGE TypeFamilies,MultiParamTypeClasses,FlexibleInstances,TypeOperators #-}

-- Lists of types

-- The class of things where the end of them can be replaced with something
-- The extra parameter t combined with FlexibleInstances lets us get away with essentially
--  type TypeListConcat :: * -> *
-- And instances with a free variable for the first argument
class TypeList l a where
    type TypeListConcat    l    a :: * 
    typeListConcat      :: l -> a -> TypeListConcat l a

-- An identity for a list of types. Nothing guarantees it is unique
data TypeListNil = TypeListNil
    deriving (Show)

instance TypeList TypeListNil a where
    type TypeListConcat TypeListNil a = a
    typeListConcat      TypeListNil a = a

-- Cons for a list of types, nothing guarantees it is unique.
data (:::) h t = (:::) h t
    deriving (Show)

infixr 5 :::

instance (TypeList t a) => TypeList (h ::: t) a where
    type TypeListConcat (h ::: t) a = h ::: (TypeListConcat t a)
    typeListConcat      (h ::: t) a = h ::: (typeListConcat t a)

-- A Distribution instance for lists of types
class Distribution m where
    type SampleSpace m :: *

instance Distribution TypeListNil where
    type SampleSpace TypeListNil = TypeListNil

instance (Distribution m1, Distribution m2) => Distribution (m1 ::: m2) where
    type SampleSpace (m1 ::: m2) = SampleSpace m1 ::: SampleSpace m2

-- Some types and values to play with
data NormalDistribution = NormalDistributionWhatever

instance Distribution NormalDistribution where
    type SampleSpace NormalDistribution = Doubles

data ExponentialDistribution = ExponentialDistributionWhatever

instance Distribution ExponentialDistribution where
    type SampleSpace ExponentialDistribution = Doubles

data BinaryDistribution = BinaryDistributionWhatever

instance Distribution BinaryDistribution where
    type SampleSpace BinaryDistribution = Bools

data Doubles = DoublesSampleSpaceWhatever
    deriving (Show)

data Bools = BoolSampleSpaceWhatever
    deriving (Show)

-- Play with them

example1 :: TypeListConcat (Doubles ::: TypeListNil) (Doubles ::: Bools ::: TypeListNil)
example1 = (DoublesSampleSpaceWhatever ::: TypeListNil) `typeListConcat` (DoublesSampleSpaceWhatever ::: BoolSampleSpaceWhatever ::: TypeListNil)

example2 :: TypeListConcat (Doubles ::: Doubles ::: TypeListNil) (Bools ::: TypeListNil)
example2 = example2

example3 :: Doubles ::: Doubles ::: Bools ::: TypeListNil
example3 = example1

example4 :: SampleSpace (NormalDistribution ::: ExponentialDistribution ::: BinaryDistribution ::: TypeListNil)
example4 = example3

main = print example4

编辑 - 使用TypeList s

的代码

这里有一些代码与您在编辑中添加的代码类似。我无法弄清Rand应该是什么,所以我做了别的事情。

-- Distributions with sampling

class Distribution m => Generative m where
    generate :: m -> StdGen -> (SampleSpace m, StdGen)

instance Generative TypeListNil where
    generate TypeListNil g = (TypeListNil, g)

instance (Generative m1, Generative m2) => Generative (m1 ::: m2) where
    generate (m ::: ms) g =
        let
            (x, g') = generate m g
            (xs, g'') = generate ms g'
        in (x ::: xs, g'')

-- Distributions with modes

class Distribution m => Modal m where
    modes :: m -> [SampleSpace m]

instance Modal TypeListNil where
    modes TypeListNil = [TypeListNil]

instance (Modal m1, Modal m2) => Modal (m1 ::: m2) where
    modes (m ::: ms) = [ x ::: xs | x <- modes m, xs <- modes ms] 

答案 1 :(得分:1)

以下是DataKinds的解决方案。我们还需要更多扩展程序,FlexibleContextsFlexibleInstances

{-# LANGUAGE TypeOperators,DataKinds,GADTs,TypeFamilies,FlexibleInstances,FlexibleContexts #-}

我们将继续使用您的Distribution类作为依赖类型的示例

class Distribution m where
    type SampleSpace m :: *

借用the TypeMap example you found,我们会

type family   TypeMap (f :: * -> *) (xs :: [*]) :: [*]
type instance TypeMap t             '[]         =  '[]
type instance TypeMap t             (x ': xs)   =  t x ': TypeMap t xs

在类型列表中,我们希望能够TypeMap SampleSpace。很遗憾,我们无法部分应用类型系列中的类型,因此我们将TypeMap专门用于SampleSpace。这里的想法是SampleSpaces = TypeMap SampleSpace

type family   SampleSpaces (xs :: [*]) :: [*]
type instance SampleSpaces '[]         =  '[]
type instance SampleSpaces (x ': xs)   =  SampleSpace x ': SampleSpaces xs

我们将继续使用您的HList,但为其添加Show个实例:

data HList (xs :: [*]) where
    Nil   ::                  HList '[]
    (:+:) :: x -> HList xs -> HList (x ': xs)

infixr 5 :+:

instance (Show x, Show (HList xs)) => Show (HList (x ': xs)) where
    showsPrec p (x :+: xs) = showParen (p > plus_prec) $
            showsPrec (plus_prec+1) x       .
            showString              " :+: " .
            showsPrec (plus_prec) xs
        where plus_prec = 5

instance Show (HList '[]) where
    show _ = "Nil"

现在我们都设置为Distribution s的异构列表派生实例。请注意':右侧的类型如何使用我们在上面定义的SampleSpaces

instance (Distribution m, Distribution (HList ms)) => Distribution (HList (m ': ms)) where
    type SampleSpace (HList (m ': ms)) = HList (SampleSpace m ': SampleSpaces ms)

instance Distribution (HList '[]) where
    type SampleSpace (HList '[]) = HList '[]

现在我们可以玩它并看到一堆类型是等价的

-- Some types and values to play with
data NormalDistribution = NormalDistributionWhatever

instance Distribution NormalDistribution where
    type SampleSpace NormalDistribution = Doubles

data ExponentialDistribution = ExponentialDistributionWhatever

instance Distribution ExponentialDistribution where
    type SampleSpace ExponentialDistribution = Doubles

data BinaryDistribution = BinaryDistributionWhatever

instance Distribution BinaryDistribution where
    type SampleSpace BinaryDistribution = Bools

data Doubles = DoublesSampleSpaceWhatever
    deriving (Show)

data Bools = BoolSampleSpaceWhatever
    deriving (Show)

-- Play with them

example1 :: HList [Doubles, Doubles, Bools]
example1 = DoublesSampleSpaceWhatever :+: DoublesSampleSpaceWhatever :+: BoolSampleSpaceWhatever :+: Nil

example2 :: SampleSpace (HList [NormalDistribution, ExponentialDistribution, BinaryDistribution])
example2 = example1

example3 :: SampleSpace (HList [ExponentialDistribution, NormalDistribution, BinaryDistribution])
example3 = example2

main = print example3