我有一个单次测量与时间(约3000点)的数据集。我希望通过在其中拟合曲线来平滑数据。实验是一个多阶段的物理过程,所以我很确定单个多项式不适合整个集合。
因此,我正在观察一系列多项式。我想指定使用多少个多项式。在我看来这是一个相当简单的事情,我希望有一些预先建立的库来做到这一点。我在Apache Commons Math中看过org.apache.commons.math3.fitting.PolynomialFitter
,但似乎只能使用单个多项式。
有人能建议最好的方法吗? Java首选,但我可以使用Python。
答案 0 :(得分:2)
如果您正在寻找local regression,Commons Math会将其实现为LoessInterpolator
。您将得到最终结果作为“样条”,即平滑的分段三次多项式序列。
答案 1 :(得分:1)
在finmath lib中有一个名为curve的类,它实现了一些插值方案(线性,样条,akima等)。这些曲线可以将它们的点作为参数提供给求解器,然后您可以使用全局优化(如Levenberg Marquardt优化器)来最小化数据到曲线的距离(定义一些首选标准)。
这实际上是在" Curve Calibration"这是数学金融的应用。如果曲线中的点数(参数)与数据一样多,则可能非常合适。如果您的点数少于数据,则最适合您的标准。
Finfth lib中的Levenberg Marquardt是多线程的并且速度非常快(<<<<<<<<&n;&n;&n;
)<<<见
免责声明:我是该图书馆的开发人员。
注意:我也喜欢commons-math,但是对于曲线拟合我还没有使用它(还),因为我需要(ed)特定于我的应用程序的某些拟合属性(数学金融)。
(编辑)
这是一个小型演示: (注意:此演示需要finmath-lib 1.2.13或mvn.finmath.net或{{3}处提供的当前1.2.12-SNAPSHOT (它与1.2.12不兼容)
package net.finmath.tests.marketdata.curves;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import org.junit.Test;
import net.finmath.marketdata.model.curves.Curve;
import net.finmath.marketdata.model.curves.CurveInterface;
import net.finmath.optimizer.LevenbergMarquardt;
import net.finmath.optimizer.SolverException;
/**
* A short demo on how to use {@link net.finmath.marketdata.model.curves.Curve}.
*
* @author Christian Fries
*/
public class CurveTest {
private static NumberFormat numberFormat = new DecimalFormat("0.0000");
/**
* Run a short demo on how to use {@link net.finmath.marketdata.model.curves.Curve}.
*
* @param args Not used.
* @throws SolverException Thrown if optimizer fails.
* @throws CloneNotSupportedException Thrown if curve cannot be cloned for optimization.
*/
public static void main(String[] args) throws SolverException, CloneNotSupportedException {
(new CurveTest()).testCurveFitting();
}
/**
* Tests fitting of curve to given data.
*
* @throws SolverException Thrown if optimizer fails.
* @throws CloneNotSupportedException Thrown if curve cannot be cloned for optimization.
*/
@Test
public void testCurveFitting() throws SolverException, CloneNotSupportedException {
/*
* Build a curve (initial guess for our fitting problem, defines the times).
*/
Curve.CurveBuilder curveBuilder = new Curve.CurveBuilder();
curveBuilder.setInterpolationMethod(Curve.InterpolationMethod.LINEAR);
curveBuilder.setExtrapolationMethod(Curve.ExtrapolationMethod.LINEAR);
curveBuilder.setInterpolationEntity(Curve.InterpolationEntity.VALUE);
// Add some points - which will not be fitted
curveBuilder.addPoint(-1.0 /* time */, 1.0 /* value */, false /* isParameter */);
curveBuilder.addPoint( 0.0 /* time */, 1.0 /* value */, false /* isParameter */);
// Add some points - which will be fitted
curveBuilder.addPoint( 0.5 /* time */, 2.0 /* value */, true /* isParameter */);
curveBuilder.addPoint( 0.75 /* time */, 2.0 /* value */, true /* isParameter */);
curveBuilder.addPoint( 1.0 /* time */, 2.0 /* value */, true /* isParameter */);
curveBuilder.addPoint( 2.2 /* time */, 2.0 /* value */, true /* isParameter */);
curveBuilder.addPoint( 3.0 /* time */, 2.0 /* value */, true /* isParameter */);
final Curve curve = curveBuilder.build();
/*
* Create data to which the curve should be fitted to
*/
final double[] givenTimes = { 0.0, 0.5, 0.75, 1.0, 1.5, 1.75, 2.5 };
final double[] givenValues = { 3.5, 12.3, 13.2, 7.5, 5.5, 2.9, 4.4 };
/*
* Find a best fitting curve.
*/
// Define the objective function
LevenbergMarquardt optimizer = new LevenbergMarquardt(
curve.getParameter() /* initial parameters */,
givenValues /* target values */,
100, /* max iterations */
Runtime.getRuntime().availableProcessors() /* max number of threads */
) {
@Override
public void setValues(double[] parameters, double[] values) throws SolverException {
CurveInterface curveGuess = null;
try {
curveGuess = curve.getCloneForParameter(parameters);
} catch (CloneNotSupportedException e) {
throw new SolverException(e);
}
for(int valueIndex=0; valueIndex<values.length; valueIndex++) {
values[valueIndex] = curveGuess.getValue(givenTimes[valueIndex]);
}
}
};
// Fit the curve (find best parameters)
optimizer.run();
CurveInterface fittedCurve = curve.getCloneForParameter(optimizer.getBestFitParameters());
// Print out fitted curve
for(double time = -2.0; time < 5.0; time += 0.1) {
System.out.println(numberFormat.format(time) + "\t" + numberFormat.format(fittedCurve.getValue(time)));
}
// Check fitted curve
double errorSum = 0.0;
for(int pointIndex = 0; pointIndex<givenTimes.length; pointIndex++) {
errorSum += fittedCurve.getValue(givenTimes[pointIndex]) - givenValues[pointIndex];
}
System.out.println("Mean deviation: " + errorSum);
/*
* Test: With the given data, the fit cannot over come that at 0.0 we have an error of -2.5.
* Hence we test if the mean deviation is -2.5 (the optimizer reduces the variance)
*/
org.junit.Assert.assertTrue(Math.abs(errorSum - -2.5) < 1E-5);
}
}