在python中使用递归解决迷宫

时间:2014-03-28 00:41:22

标签: python recursion maze

所以,我有一个任务要求我使用递归来解决迷宫问题。我将发布作业指南,以便您可以看到我在说什么。教授没有解释这么多的递归,他给了我们递归的例子,我将发布,但我希望有人能够给我一个更深入的递归解释,以及我如何将其用于解决一个迷宫。我不是要求任何人编写代码,我只是希望一些解释会让我走上正确的道路。感谢任何回答的人。

以下是我的示例:

    def foo():
        print("Before")
        bar()
        print("After")

    def bar():
        print("During")


    def factorial(n):
        """n!"""
        product = 1
        for i in range(n,0,-1):
        product *= i
        return product

    def recFac(n):
        """n! = n * (n-1)!"""
        if(n == 1):
          return 1
        return n * recFac(n-1)

    def hello():
        """Stack overflow!"""
        hello()

    def fib(n):
        """f(n) = f(n-1) + f(n-2)
        f(0) = 0
        f(1) = 1"""
        if n == 0 or n == 1: #base case
           return n
        return fib(n-1) + fib(n-2) #recursive case

    def mult(a,b):
        """a*b = a + a + a + a ..."""
        #base case
        if (b == 1):
           return a
        #recursive case
        prod = mult(a,b-1)
        prod *= a
        return prod


    def exp(a,b):
        """a ** b = a* a * a * a * a *.... 'b times'"""
        #base case
        if (b==0):
           return 1
        if (b == 1):
           return a
        #recursive case
        return exp(a,b-1)*a

    def pallindrome(word):
        """Returns True if word is a pallindrome, False otherwise"""
        #base case
        if word == "" or len(word)==1:
           return True

        #recursive case
        if word[0] == word[len(word)-1]:
        word = word[1:len(word)-1]
        return pallindrome(word)
        else:
            return False

以下是指南:

你将创建一个迷宫爬虫,能够通过递归的力量解决你给它的任何迷宫!

问题1 - 加载迷宫

在你解决迷宫之前,你必须加载迷宫。对于此作业,您将使用简单的文本格式作为迷宫。您可以使用此示例迷宫或创建自己的迷宫。

这个问题的目标是加载任何给定的迷宫文件,并将其读入二维列表。 例如:loadMaze(“somemaze.maze”)应加载somemaze.maze文件并创建如下列表...

    [['#','#','#','#','#','#','#','#','#'], 
     ['#','S','#',' ',' ',' ','#','E','#'], 
     ['#',' ','#',' ','#',' ',' ',' ','#'], 
     ['#',' ',' ',' ','#',' ','#',' ','#'], 
     ['#', #','#','#','#','#','#','#','#']] 

请注意,列表中的所有'\ r'和'\ n'字符都已被删除。为了使下一个问题更简单,您可以将此列表设为全局变量。

接下来编写一个以更好的格式打印出迷宫的函数:

如,

    ####################################
    #S#  ##  ######## # #      #     # #
    # #   #             # #        #   #
    #   # ##### ## ###### # #######  # #
    ### # ##    ##      # # #     #### #
    #   #    #  #######   #   ###    #E#
    ####################################

在继续之前使用不同的迷宫测试您的代码。

问题2 - 准备解决迷宫

在你解决迷宫之前,你需要找到起点!在代码中添加一个名为findStart()的函数,它将搜索迷宫(逐个字符)并返回“S”字符的x和y坐标。你可以假设迷宫中至多存在一个这样的角色。如果在迷宫中没有找到'S',则返回-1作为x和y坐标。

在继续之前,在多个位置(包括没有位置)使用'S'测试您的代码。

问题3 - 解决迷宫!

最后,你准备好递归地解决迷宫了!您的解决方案应该只需要一个方法:solve(y,x)

解决方法的单个实例应解决迷宫中的单个位置。参数y和x是要求解的当前坐标。你的解决方法应该完成一些事情。它应该检查它当前是否正在解决'E'的位置。在这种情况下,您的求解方法已成功完成。否则它应该尝试递归地解决右边的空间。请注意,您的方法应该只尝试解决空间,而不是墙('#')。如果该递归没有导致结束,那么尝试下来,然后向左,向上。如果全部失败,您的代码应该回溯一步,并尝试另一个方向。

最后,在解决迷宫时,您的代码应该留下其进度的指标。如果是向右搜索,则当前位置应为'>'代替空旷的空间。如果搜索下来放'v'。如果向左搜索'<',并向上搜索'^'。如果您的代码必须回溯,请删除方向箭头,并将位置设置回''。

一旦你的迷宫被解决,再次打印出迷宫。您应该看到走迷宫的分步指南。 如,

    main("somemaze.maze")
    ######### 
    #S#   #E# 
    # # #   # 
    #   # # # 
    #########

S为(1,1)

     ######### 
     #S#>>v#E# 
     #v#^#>>^# 
     #>>^# # # 
     #########

使用不同的开始和结束位置测试代码,并可选择在各种迷宫上测试。

以下是我目前的代码: 但是代码实际上并没有在迷宫中打印轨道,我不知道为什么。

    def loadMaze():
        readIt = open('Maze.txt', 'r')
        readLines = readIt.readlines()
        global mazeList
        mazeList = [list(i.strip()) for i in readLines]

    def showMaze():
        for i in mazeList:
            mazeprint = ''
        for j in i:
            mazeprint = mazeprint + j
        print(mazeprint)
        print('\n')    

    def solve(x,y, mazeList):
        mazeList[x][y] = "o"
        #Base case  
        if y > len(mazeList) or x > len(mazeList[y]):
           return False
        if mazeList[y][x] == "E":
           return True 
        if mazeList[y][x] != " ":
           return False
        #marking
        if solve(x+1,y) == True:  #right
           mazeList[x][y]= '>'
        elif solve(x,y+1) == True:  #down
             mazeList[x][y]= 'v'     
        elif solve(x-1,y) == True:  #left
             mazeList[x][y]= '<'     
        elif solve(x,y-1) == True:  #up
             mazeList[x][y]= '^'
        else:
           mazeList[x][y]= ' '
        return (mazeList[x][y]!= ' ')

5 个答案:

答案 0 :(得分:3)

以下是我对CodeEval The Labirynth挑战的解决方案:

import sys
sys.setrecursionlimit(5000)


class Maze(object):
    FLOOR = ' '
    WALLS = '*'
    PATH = '+'

    def __init__(self):
        self.cols = 0
        self.rows = 0
        self.maze = []

    def walk_forward(self, current_k, r, c):
        self.maze[r][c] = current_k
        next_k = current_k + 1
        # up
        if r > 1:
            up = self.maze[r - 1][c]
            if up != self.WALLS:
                if up == self.FLOOR or int(up) > current_k:
                    self.walk_forward(next_k, r - 1, c)
        # down
        if r < self.rows - 1:
            down = self.maze[r + 1][c]
            if down != self.WALLS:
                if down == self.FLOOR or int(down) > current_k:
                    self.walk_forward(next_k, r + 1, c)
        # left
        if c > 1:
            left = self.maze[r][c - 1]
            if left != self.WALLS:
                if left == self.FLOOR or int(left) > current_k:
                    self.walk_forward(next_k, r, c - 1)
        # right
        if c < self.cols - 1:
            right = self.maze[r][c + 1]
            if right != self.WALLS:
                if right == self.FLOOR or int(right) > current_k:
                    self.walk_forward(next_k, r, c + 1)

    def walk_backward(self, r, c):
        current_k = self.maze[r][c]
        if not isinstance(current_k, int):
            return False
        self.maze[r][c] = self.PATH

        up = self.maze[r - 1][c] if r > 0 else None
        down = self.maze[r + 1][c] if r < self.rows - 1 else None
        left = self.maze[r][c - 1] if c > 1 else None
        right = self.maze[r][c + 1] if c < self.cols else None

        passed = False
        if up and isinstance(up, int) and up == current_k - 1:
            self.walk_backward(r - 1, c)
            passed = True
        if down and isinstance(down, int) and down == current_k - 1:
            self.walk_backward(r + 1, c)
            passed = True
        if left and isinstance(left, int) and left == current_k - 1:
            self.walk_backward(r, c - 1)
            passed = True
        if right and isinstance(right, int) and right == current_k - 1:
            self.walk_backward(r, c + 1)                    

    def cleanup(self, cleanup_path=False):
        for r in range(0, self.rows):
            for c in range(0, self.cols):
                if isinstance(self.maze[r][c], int):
                    self.maze[r][c] = self.FLOOR
                if cleanup_path and self.maze[r][c] == self.PATH:
                    self.maze[r][c] = self.FLOOR

    def solve(self, start='up', show_path=True):
        # finding start and finish points
        upper = lower = None
        for c in range(0, self.cols):
            if self.maze[0][c] == self.FLOOR:
                upper = (0, c)
                break
        for c in range(0, self.cols):
            if self.maze[self.rows - 1][c] == self.FLOOR:
                lower = (self.rows - 1, c)
                break
        if start == 'up':
            start = upper
            finish = lower
        else:
            start = lower
            finish = upper

        self.cleanup(cleanup_path=True)
        self.walk_forward(1, start[0], start[1])
        length = self.maze[finish[0]][finish[1]]
        if not isinstance(length, int):
            length = 0
        if show_path:
            self.walk_backward(finish[0], finish[1])
            self.cleanup(cleanup_path=False)
        else:
            self.cleanup(cleanup_path=True)
        return length

    def save_to_file(self, filename):
        with open(filename, 'w') as f:
            f.writelines(str(self))

    def load_from_file(self, filename):
        self.maze = []
        with open(filename, 'r') as f:
            lines = f.readlines()
        for line in lines:
            row = []
            for c in line.strip():
                row.append(c)
            self.maze.append(row)
        self.rows = len(self.maze)
        self.cols = len(self.maze[0]) if self.rows > 0 else 0

    def get_maze(self):
        return copy.copy(self.maze)

    def __str__(self):
        as_string = u''
        for row in self.maze:
            as_string += u''.join([str(s)[-1] for s in row]) + "\n"
        return as_string


maze = Maze()
maze.load_from_file(sys.argv[1])
maze.solve(show_path=True)
print str(maze)

答案 1 :(得分:1)

递归实际上是一个简单的想法:要解决问题,您只需一步缩小问题,然后解决减少的问题。这种情况一直持续到你遇到基本问题为止#34;你知道如何完全解决。您返回基本解决方案,然后添加到每个步骤返回的解决方案,直到您拥有完整的解决方案。

所以要解决n !,我们记住n并解决(n-1)!基本情况是1 !,我们返回1;然后在每个返回步骤,我们乘以记忆的数字(2 * 1!是2,3 * 2!是6,4 * 3!是24,5 * 4!是120),直到我们乘以n并得到完整解。这实际上是一种非常苍白和贫血的递归;每一步都只有一个可能的决定。被称为&#34;尾部递归&#34;,这很容易从里到外转换为迭代解决方案(从1开始并乘以每个数字到n)。

一种更有趣的递归方法是将问题分成两半,求解每一半,然后合并两个半解;例如,快速排序通过选择一个项目对列表进行排序,将列表划分为&#34;小于项目&#34;和&#34;比项目#34更大的一切,快速分配每一半,然后返回快速排序(较小)+项目+快速排序(较大)。基本情况是&#34;当我的列表只有一个项目时,它被排序&#34;。

对于迷宫,我们将以四种方式分解问题 - 如果我从当前位置向右,向左,向上和向下移动,所有解决方案都可能 - 具有只有一个递归搜索才能实际找到的特殊功能一个办法。基本情况是&#34;我站在E&#34;,失败是&#34;我在墙上&#34;或者&#34;我在一个我已经去过的空间&#34;。


为了兴趣,

编辑,这是一个OO解决方案(兼容Python 2.x和3.x):

from collections import namedtuple

Dir = namedtuple("Dir", ["char", "dy", "dx"])

class Maze:
    START = "S"
    END   = "E"
    WALL  = "#"
    PATH  = " "
    OPEN  = {PATH, END}  # map locations you can move to (not WALL or already explored)

    RIGHT = Dir(">",  0,  1)
    DOWN  = Dir("v",  1,  0)
    LEFT  = Dir("<",  0, -1)
    UP    = Dir("^", -1,  0)
    DIRS  = [RIGHT, DOWN, LEFT, UP]

    @classmethod
    def load_maze(cls, fname):
        with open(fname) as inf:
            lines = (line.rstrip("\r\n") for line in inf)
            maze  = [list(line) for line in lines]
        return cls(maze)

    def __init__(self, maze):
        self.maze = maze

    def __str__(self):
        return "\n".join(''.join(line) for line in self.maze)

    def find_start(self):
        for y,line in enumerate(self.maze):
            try:
                x = line.index("S")
                return y, x
            except ValueError:
                pass

        # not found!
        raise ValueError("Start location not found")

    def solve(self, y, x):
        if self.maze[y][x] == Maze.END:
            # base case - endpoint has been found
            return True
        else:
            # search recursively in each direction from here
            for dir in Maze.DIRS:
                ny, nx = y + dir.dy, x + dir.dx
                if self.maze[ny][nx] in Maze.OPEN:  # can I go this way?
                    if self.maze[y][x] != Maze.START: # don't overwrite Maze.START
                        self.maze[y][x] = dir.char  # mark direction chosen
                    if self.solve(ny, nx):          # recurse...
                        return True                 # solution found!

            # no solution found from this location
            if self.maze[y][x] != Maze.START:       # don't overwrite Maze.START
                self.maze[y][x] = Maze.PATH         # clear failed search from map
            return False

def main():
    maze = Maze.load_maze("somemaze.txt")

    print("Maze loaded:")
    print(maze)

    try:
        sy, sx = maze.find_start()
        print("solving...")
        if maze.solve(sy, sx):
            print(maze)
        else:
            print("    no solution found")
    except ValueError:
        print("No start point found.")

if __name__=="__main__":
    main()

并且在运行时产生:

Maze loaded:
    ####################################
    #S#  ##  ######## # #      #     # #
    # #   #             # #        #   #
    #   # ##### ## ###### # #######  # #
    ### # ##    ##      # # #     #### #
    #   #    #  #######   #   ###    #E#
    ####################################
solving...
    ####################################
    #S#  ##  ######## # #>>>>>v#  >>v# #
    #v#>>v#    >>>v     #^#   >>>>^#>>v#
    #>>^#v#####^##v######^# #######  #v#
    ### #v##>>>^##>>>>>v#^# #     ####v#
    #   #>>>^#  #######>>^#   ###    #E#
    ####################################

请注意,给定的赋值有一些unPythonic元素:

  • 它要求camelCase个函数名而不是underscore_separated
  • 它建议使用全局变量而不是显式传递数据
  • 它要求find_start在失败时返回标志值而不是引发异常

答案 2 :(得分:1)

(约会自己,我实际上是在高中时在COBOL中解决了这个问题。)

你可以考虑将迷宫解决为采取措施。

当您采取措施时,每次都适用相同的规则。由于每次都适用相同的规则,因此您可以对每个步骤使用完全相同的指令集。当您迈出一步时,您只需再次调用相同的例程,更改参数以指示新步骤。这是递归。你可以一步一步地解决问题。

  

注意:一些递归解决方案将问题分成两半,解决每一半独立于另一半的问题,当两个解决方案实际上是独立的时,这种解决方案有效。它在这里不起作用,因为每个步骤(解决方案)取决于前面的步骤。

如果你走到了死胡同,你会退出死胡同,直到你找到一个仍然可以检查的方格的步骤。

  

有用的提示:您没有在 出口的路上标记正确的路径,因为您不知道您现在正在采取的步骤是路径的一部分。出口。当您知道每个步骤确实是路径的一部分时,您在回来的路上标记路径。您可以这样做,因为每个步骤都会记住它在下一步之前所处的方位。

     

相反,你在你尝试过的每个方格中加上一个标记,只说:我来过这里,不需要再检查一下。在打印解决方案之前清理它们。

答案 3 :(得分:0)

Maze solving with python显示了我的答案。但是,如果您想自己完成代码,那么步骤就是。

 1. Start at the entrance.  
 2. Call the function solve(x,y) with the entrance co-ordinates  
 3. in solve, return false if the input point has already been handled or is a wall.  
 4. Mark the current point as handled (tag = 'o')  
 5. go to the right and call solve on that point. If it returns true, set tag to '>'  
 6 elif do the same for left and '<'  
 7 elif do the same for up and '^'  
 8 elif do the same for down and 'v'  
 9 else this is a false path, set tag = ' ' 
10 set the current maze point to tag
11 return (tag != ' ')

或者将步骤9退出并进行步骤11

return(tag != 'o')

然后搜索迷宫并用''

替换每个'o'

您可以双向显示迷宫,以便显示您尝试解决它的方式以及最终答案。这已被用作Solaris屏幕保护程序,潜在路径以一种颜色显示,实际路径以不同颜色显示,以便您可以看到它尝试然后成功。

答案 4 :(得分:0)

这是我之前编写的代码,可能对您有用

在此处查看完整代码:https://github.com/JK88-1337/MazeSolve

#import part
import time
import sys
import os

#global values
load = 0                                 # set initial loading value
walk = [(1,0),(-1,0),(0,1),(0,-1)]       # set movements
backtracker = []                         # set backtracker (remember that this is a stack)
gmainmaze = []                           # set initial blank maze

def initialize():   #loading 
    sx = 0 # start x value
    sy = 0 # start y value
    ex = 0 # end x value
    ey = 0 # end y value
    while load == 0:    #just some cool animation
        sys.stdout.write("\rloading |")
        time.sleep(0.1)
        sys.stdout.write("\rloading /")
        time.sleep(0.1)
        sys.stdout.write("\rloading -")
        time.sleep(0.1)
        sys.stdout.write("\rloading \\")
        time.sleep(0.1)
        sys.stdout.write("\r")
        mainmaze = loadMaze("maze.txt") # IMPORTANT: load the maze under the same folder named "maze.txt"
        print("Maze Loaded")
        print(" ")
        time.sleep(1)
        print(" ")
        print("Locating start point...")
        sx, sy = spotter(5,mainmaze)
        time.sleep(1)
        print(" ")
        print("Locating end point...")
        ex, ey = spotter(3,mainmaze)
        print(" ")
        time.sleep(1)
        return sx, sy, ex, ey, mainmaze;
        break
    print(" ")
    sys.stdout.write("\rInitialized!")
    print(" ")
    time.sleep(3)
    os.system("cls")

def loadMaze(filename):
    #load the data from the file into a 2D list
    with open(filename) as i:
        maze = []
        for line in i:
            line = line.strip()
            spawnmaze = line.split(", ")
            maze.append(spawnmaze)
    return maze

def spotter(num,maze):
    #Locate the 'element' in the maze (this can either be "5" or "3")
    num = str(num)
    rowcounter = -1
    linecounter = 0
    for rows in maze:
        rowcounter = rowcounter + 1
        if num in rows:
            for element in rows:
                if element == num:
                    print("Tango Spotted, Grid:", rowcounter, linecounter)
                    return rowcounter, linecounter;
                    break
                linecounter = linecounter + 1

def valid(maze,x,y): # check if valid
    height = len(maze) - 1
    width = len(maze[0]) - 1
    if 0 <= x <= height and 0 <= y <= width:
        return 1
    else: 
        return 0

def solveMaze(sx,sy,ex,ey): # solve maze
    global gmainmaze
    for i in walk:          #try every direction
        x = sx + i[0]       #make the move
        y = sy + i[1]
        if valid(gmainmaze,x,y): # check if still in the maze
            if x == ex and y == ey: #check if reached destination
                print("SITREP:Destination Arrived")
                print("The Logistic Path Is:\n",backtracker)
                print(" ")
                return 1
            else:
                if gmainmaze[x][y] == "0" and (x,y) not in backtracker: #add to the stack
                    backtracker.append((x,y))
                else:
                    continue
        else:
            continue
        if solveMaze(x,y,ex,ey) == 1: # Recursion (do the next step)
            return 1
        else:
            continue
    go = backtracker.pop(-1) #moveback while 
    return 0

def printMaze(maze):
    for x in range(len(maze)):
        for y in range(len(maze[x])):
            print(maze[x][y], end=' ')
        print("")

def visualize(maze):    # a cool function to visualize the maze
    for x in range(len(maze)):
        for y in range(len(maze[x])):
            if maze[x][y] == "5":
                maze[x][y] = "╳"    # path
            elif maze[x][y] == "0":
                maze[x][y] = "░"    # unbeen path
            elif maze[x][y] == "1":
                maze[x][y] = "█"    # wall
            elif maze[x][y] == "3":
                maze[x][y] = "╳"    # basically path as well
            print(maze[x][y], end=' ')
        print("")


def main():
    #initialize the maze
    sx, sy, ex, ey, mainmaze = initialize()
    global gmainmaze
    gmainmaze = mainmaze
    load = 1
    #solve the maze
    gmainmaze[sx][sy] = "0"
    gmainmaze[ex][ey] = "0" # change the start and end into "0" to make it a way
    solveMaze(sx,sy,ex,ey)
    for i in backtracker:
        gmainmaze[i[0]][i[1]] = "5"
    gmainmaze[sx][sy] = "5"
    gmainmaze[ex][ey] = "3" # change the start and end back
    #print the maze
    width = len(gmainmaze[0]) - 1
    print("Check Your Map...")
    print("Map:")
    print("--"*(width+1))
    printMaze(gmainmaze)
    print("--"*(width+1))
    #visualize the maze uncomment to establish the function (btw check if your terminal can print these unicodes)
    #visualize(gmainmaze)
    time.sleep(5)

main()
© 2020 GitHub, Inc.