我正在尝试将热图与我创建的世界地图相结合。我得到的是一个包含3列的CSV文件。第一列包含国家/地区的名称,第二列和第三列分别包含纬度经度。现在我写了一个类,根据世界地图上的坐标绘制点。这很好,但我现在想要的是热图,因为只有几个点一切都很好,但我会得到很多分。因此,根据一个国家和指定边界的点数,应该实现热图。
import csv
class toMap:
def setMap(self):
filename = 'log.csv'
lats, lons = [], []
with open(filename) as f:
reader = csv.reader(f)
next(reader)
for row in reader:
lats.append(float(row[1]))
lons.append(float(row[2]))
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import numpy as np
map = Basemap(projection='robin', resolution='l', area_thresh=1000.0,
lat_0=0, lon_0=-130)
map.drawcoastlines()
map.drawcountries()
map.fillcontinents(color='gray')
#map.bluemarble()
#map.drawmapboundary()
map.drawmeridians(np.arange(0, 360, 30))
map.drawparallels(np.arange(-90, 90, 30))
x, y = map(lons, lats)
map.plot(x, y, 'ro', markersize=3)
plt.show()
def main():
m = toMap()
m.setMap()
以下是CSV的示例:
Vietnam,10.35,106.35
United States,30.3037,-97.7696
Colombia,4.6,-74.0833
China,35.0,105.0
Indonesia,-5.0,120.0
United States,38.0,-97.0
United States,41.7511,-88.1462
Bosnia and Herzegovina,43.85,18.3833
United States,33.4549,-112.0777
答案 0 :(得分:5)
按照上述评论中的相同逻辑,我对您的代码进行了一些更改,以获得您想要的地图类型。
我的解决方案使用cartopy library。
所以,这是您的代码,我的更改(和评论):
import csv
class toMap:
def setMap(self):
# --- Save Countries, Latitudes and Longitudes ---
filename = 'log.csv'
pais, lats, lons = [], [], []
with open(filename) as f:
reader = csv.reader(f)
next(reader)
for row in reader:
pais.append(str(row[0]))
lats.append(float(row[1]))
lons.append(float(row[2]))
#count the number of times a country is in the list
unique_pais = set(pais)
unique_pais = list(unique_pais)
c_numero = []
for p in unique_pais:
c_numero.append(pais.count(p))
print p, pais.count(p)
maximo = max(c_numero)
# --- Build Map ---
import cartopy.crs as ccrs
import cartopy.io.shapereader as shpreader
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
cmap = mpl.cm.Blues
# --- Using the shapereader ---
test = 0
shapename = 'admin_0_countries'
countries_shp = shpreader.natural_earth(resolution='110m',
category='cultural', name=shapename)
ax = plt.axes(projection=ccrs.Robinson())
for country in shpreader.Reader(countries_shp).records():
nome = country.attributes['name_long']
if nome in unique_pais:
i = unique_pais.index(nome)
numero = c_numero[i]
ax.add_geometries(country.geometry, ccrs.PlateCarree(),
facecolor=cmap(numero / float(maximo), 1),
label=nome)
test = test + 1
else:
ax.add_geometries(country.geometry, ccrs.PlateCarree(),
facecolor='#FAFAFA',
label=nome)
if test != len(unique_pais):
print "check the way you are writting your country names!"
plt.show()
def main():
m = toMap()
m.setMap()
我已根据您的逻辑制作了一些自定义的log.csv文件,其中包含一些国家/地区,以及我的地图:
(我已经使用了Blues色彩映射表,并且根据国家/地区在csv文件中显示的最大次数来定义最大比例。)
根据您在编辑问题之前的示例图片,我认为这正是您想要的!