我只想弄清楚如何在两个data.tables上进行条件连接。
我写了一个sqldf
条件连接来给我开始或结束时间在另一个开始/结束时间内的电路。
sqldf("select dt2.start, dt2.finish, dt2.counts, dt1.id, dt1.circuit
from dt2
left join dt1 on (
(dt2.start >= dt1.start and dt2.start < dt1.finish) or
(dt2.finish >= dt1.start and dt2.finish < dt1.finish)
)")
这给了我正确的结果,但对于我的大数据集来说它太慢了。
没有矢量扫描,data.table
这样做的方法是什么?
这是我的数据:
dt1 <- data.table(structure(list(circuit = structure(c(2L, 1L, 2L, 1L, 2L, 3L,
1L, 1L, 2L), .Label = c("a", "b", "c"), class = "factor"), start = structure(c(1393621200,
1393627920, 1393628400, 1393631520, 1393650300, 1393646400, 1393656000,
1393668000, 1393666200), class = c("POSIXct", "POSIXt"), tzone = ""),
end = structure(c(1393626600, 1393631519, 1393639200, 1393632000,
1393660500, 1393673400, 1393667999, 1393671600, 1393677000
), class = c("POSIXct", "POSIXt"), tzone = ""), id = structure(1:9, .Label = c("1001",
"1002", "1003", "1004", "1005", "1006", "1007", "1008", "1009"
), class = "factor")), .Names = c("circuit", "start", "end",
"id"), class = "data.frame", row.names = c(NA, -9L)))
dt2 <- data.table(structure(list(start = structure(c(1393621200, 1393624800, 1393626600,
1393627919, 1393628399, 1393632000, 1393639200, 1393646399, 1393650299,
1393655999, 1393660500, 1393666199, 1393671600, 1393673400), class = c("POSIXct",
"POSIXt"), tzone = ""), end = structure(c(1393624799, 1393626600,
1393627919, 1393628399, 1393632000, 1393639200, 1393646399, 1393650299,
1393655999, 1393660500, 1393666199, 1393671600, 1393673400, 1393677000
), class = c("POSIXct", "POSIXt"), tzone = ""), seconds = c(3599L,
1800L, 1319L, 480L, 3601L, 7200L, 7199L, 3900L, 5700L, 4501L,
5699L, 5401L, 1800L, 3600L), counts = c(1L, 1L, 0L, 1L, 2L, 1L,
0L, 1L, 2L, 3L, 2L, 3L, 2L, 1L)), .Names = c("start", "end",
"seconds", "counts"), row.names = c(1L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L), class = "data.frame"))
答案 0 :(得分:9)
使用非equi 加入:
ans = dt1[dt2, on=.(start <= end, end > start),
.(i.start, i.end, counts, id, circuit, cndn = i.start < x.start & i.end >= x.end),
allow.cartesian=TRUE
][!cndn %in% TRUE]
条件start <= end, end >= start
(注意两个情况下的>=
)将检查两个间隔是否以任何方式重叠。一方的开放区间由end > start
部分(>
而不是>=
)完成。但它仍然会选择类型的间隔:
dt1: start=================end
dt2: start--------------------------------end ## start < start, end > end
和
dt1: start=================end
dt2: start----------end ## end == end
cndn
列是检查并删除这些案例。希望这些案例不是很多,所以我们不会不必要地实现不需要的行。
PS:这种情况下的解决方案并不像我想的那样简单,这是因为解决方案需要OR
操作。可以执行两个条件连接,然后将它们绑定在一起。
也许在某些时候,我们必须考虑以更直接的方式将连接扩展到这些类型的操作的可行性。
答案 1 :(得分:4)
不知道这是否表现得更快,但这是一个数据表方法的镜头。我重塑dt1
并使用findInterval
来确定dt2
中的时间与dt1
中的时间对齐。
dt1 <- data.table(structure(list(circuit = structure(c(2L, 1L, 2L, 1L, 2L, 3L,
1L, 1L, 2L), .Label = c("a", "b", "c"), class = "factor"), start = structure(c(1393621200,
1393627920, 1393628400, 1393631520, 1393650300, 1393646400, 1393656000,
1393668000, 1393666200), class = c("POSIXct", "POSIXt"), tzone = ""),
end = structure(c(1393626600, 1393631519, 1393639200, 1393632000,
1393660500, 1393673400, 1393667999, 1393671600, 1393677000
), class = c("POSIXct", "POSIXt"), tzone = ""), id = structure(1:9, .Label = c("1001",
"1002", "1003", "1004", "1005", "1006", "1007", "1008", "1009"
), class = "factor")), .Names = c("circuit", "start", "end",
"id"), class = "data.frame", row.names = c(NA, -9L)))
dt2 <- data.table(structure(list(start = structure(c(1393621200, 1393624800, 1393626600,
1393627919, 1393628399, 1393632000, 1393639200, 1393646399, 1393650299,
1393655999, 1393660500, 1393666199, 1393671600, 1393673400), class = c("POSIXct",
"POSIXt"), tzone = ""), end = structure(c(1393624799, 1393626600,
1393627919, 1393628399, 1393632000, 1393639200, 1393646399, 1393650299,
1393655999, 1393660500, 1393666199, 1393671600, 1393673400, 1393677000
), class = c("POSIXct", "POSIXt"), tzone = ""), seconds = c(3599L,
1800L, 1319L, 480L, 3601L, 7200L, 7199L, 3900L, 5700L, 4501L,
5699L, 5401L, 1800L, 3600L), counts = c(1L, 1L, 0L, 1L, 2L, 1L,
0L, 1L, 2L, 3L, 2L, 3L, 2L, 1L)), .Names = c("start", "end",
"seconds", "counts"), row.names = c(1L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L), class = "data.frame"))
# > dt1
# circuit start end id
# 1: b 2014-02-28 16:00:00 2014-02-28 17:30:00 1001
# 2: a 2014-02-28 17:52:00 2014-02-28 18:51:59 1002
# 3: b 2014-02-28 18:00:00 2014-02-28 21:00:00 1003
# 4: a 2014-02-28 18:52:00 2014-02-28 19:00:00 1004
# 5: b 2014-03-01 00:05:00 2014-03-01 02:55:00 1005
# 6: c 2014-02-28 23:00:00 2014-03-01 06:30:00 1006
# 7: a 2014-03-01 01:40:00 2014-03-01 04:59:59 1007
# 8: a 2014-03-01 05:00:00 2014-03-01 06:00:00 1008
# 9: b 2014-03-01 04:30:00 2014-03-01 07:30:00 1009
# > dt2
# start end seconds counts
# 1: 2014-02-28 16:00:00 2014-02-28 16:59:59 3599 1
# 2: 2014-02-28 17:00:00 2014-02-28 17:30:00 1800 1
# 3: 2014-02-28 17:30:00 2014-02-28 17:51:59 1319 0
# 4: 2014-02-28 17:51:59 2014-02-28 17:59:59 480 1
# 5: 2014-02-28 17:59:59 2014-02-28 19:00:00 3601 2
# 6: 2014-02-28 19:00:00 2014-02-28 21:00:00 7200 1
# 7: 2014-02-28 21:00:00 2014-02-28 22:59:59 7199 0
# 8: 2014-02-28 22:59:59 2014-03-01 00:04:59 3900 1
# 9: 2014-03-01 00:04:59 2014-03-01 01:39:59 5700 2
# 10: 2014-03-01 01:39:59 2014-03-01 02:55:00 4501 3
# 11: 2014-03-01 02:55:00 2014-03-01 04:29:59 5699 2
# 12: 2014-03-01 04:29:59 2014-03-01 06:00:00 5401 3
# 13: 2014-03-01 06:00:00 2014-03-01 06:30:00 1800 2
# 14: 2014-03-01 06:30:00 2014-03-01 07:30:00 3600 1
## reshapes dt1 from wide to long
## puts start and end times into one column and sorts by time
## this is so that you can use findInterval later
dt3 <- dt1[,list(time = c(start,end)), by = "circuit,id"][order(time)]
dt3[,ntvl := seq_len(nrow(dt3))]
# circuit id time ntvl
# 1: b 1001 2014-02-28 16:00:00 1
# 2: b 1001 2014-02-28 17:30:00 2
# 3: a 1002 2014-02-28 17:52:00 3
# 4: b 1003 2014-02-28 18:00:00 4
# 5: a 1002 2014-02-28 18:51:59 5
# 6: a 1004 2014-02-28 18:52:00 6
# 7: a 1004 2014-02-28 19:00:00 7
# 8: b 1003 2014-02-28 21:00:00 8
# 9: c 1006 2014-02-28 23:00:00 9
# 10: b 1005 2014-03-01 00:05:00 10
# 11: a 1007 2014-03-01 01:40:00 11
# 12: b 1005 2014-03-01 02:55:00 12
# 13: b 1009 2014-03-01 04:30:00 13
# 14: a 1007 2014-03-01 04:59:59 14
# 15: a 1008 2014-03-01 05:00:00 15
# 16: a 1008 2014-03-01 06:00:00 16
# 17: c 1006 2014-03-01 06:30:00 17
# 18: b 1009 2014-03-01 07:30:00 18
## map interval to id
dt4 <- dt3[,list(ntvl = seq(from = min(ntvl), to = max(ntvl)-1), by = 1),by = "circuit,id"]
setkey(dt4, ntvl)
# circuit id ntvl
# 1: b 1001 1
# 2: a 1002 3
# 3: a 1002 4
# 4: b 1003 4
# 5: b 1003 5
# 6: b 1003 6
# 7: a 1004 6
# 8: b 1003 7
# 9: c 1006 9
# 10: c 1006 10
# 11: b 1005 10
# 12: c 1006 11
# 13: b 1005 11
# 14: a 1007 11
# 15: c 1006 12
# 16: a 1007 12
# 17: c 1006 13
# 18: a 1007 13
# 19: b 1009 13
# 20: c 1006 14
# 21: b 1009 14
# 22: c 1006 15
# 23: b 1009 15
# 24: a 1008 15
# 25: c 1006 16
# 26: b 1009 16
# 27: b 1009 17
# circuit id ntvl
## finds intervals in dt2
dt2[,`:=`(ntvl_start = findInterval(start, dt3[["time"]], rightmost.closed = FALSE),
ntvl_end = findInterval(end, dt3[["time"]], rightmost.closed = FALSE))]
# start end seconds counts ntvl_start ntvl_end
# 1: 2014-02-28 16:00:00 2014-02-28 16:59:59 3599 1 1 1
# 2: 2014-02-28 17:00:00 2014-02-28 17:30:00 1800 1 1 2
# 3: 2014-02-28 17:30:00 2014-02-28 17:51:59 1319 0 2 2
# 4: 2014-02-28 17:51:59 2014-02-28 17:59:59 480 1 2 3
# 5: 2014-02-28 17:59:59 2014-02-28 19:00:00 3601 2 3 7
# 6: 2014-02-28 19:00:00 2014-02-28 21:00:00 7200 1 7 8
# 7: 2014-02-28 21:00:00 2014-02-28 22:59:59 7199 0 8 8
# 8: 2014-02-28 22:59:59 2014-03-01 00:04:59 3900 1 8 9
# 9: 2014-03-01 00:04:59 2014-03-01 01:39:59 5700 2 9 10
# 10: 2014-03-01 01:39:59 2014-03-01 02:55:00 4501 3 10 12
# 11: 2014-03-01 02:55:00 2014-03-01 04:29:59 5699 2 12 12
# 12: 2014-03-01 04:29:59 2014-03-01 06:00:00 5401 3 12 16
# 13: 2014-03-01 06:00:00 2014-03-01 06:30:00 1800 2 16 17
# 14: 2014-03-01 06:30:00 2014-03-01 07:30:00 3600 1 17 18
## joins, by start time, then by end time
## the commented out lines may be a better alternative
## if there are many NA values
setkey(dt2, ntvl_start)
dt_ans_start <- dt4[dt2, list(start,end,counts,id,circuit),nomatch = NA]
# dt_ans_start <- dt4[dt2, list(start,end,counts,id,circuit),nomatch = 0]
# dt_ans_start_na <- dt2[!dt4]
setkey(dt2, ntvl_end)
dt_ans_end <- dt4[dt2, list(start,end,counts,id,circuit),nomatch = NA]
# dt_ans_end <- dt4[dt2, list(start,end,counts,id,circuit),nomatch = 0]
# dt_ans_end_na <- dt2[!dt4]
## bring them all together and remove duplicates
dt_ans <- unique(rbind(dt_ans_start, dt_ans_end), by = c("start", "id"))
dt_ans <- dt_ans[!(is.na(id) & counts > 0)]
dt_ans[,ntvl := NULL]
setkey(dt_ans,start)
# start end counts id circuit
# 1: 2014-02-28 16:00:00 2014-02-28 16:59:59 1 1001 b
# 2: 2014-02-28 17:00:00 2014-02-28 17:30:00 1 1001 b
# 3: 2014-02-28 17:30:00 2014-02-28 17:51:59 0 NA NA
# 4: 2014-02-28 17:51:59 2014-02-28 17:59:59 1 1002 a
# 5: 2014-02-28 17:59:59 2014-02-28 19:00:00 2 1002 a
# 6: 2014-02-28 17:59:59 2014-02-28 19:00:00 2 1003 b
# 7: 2014-02-28 19:00:00 2014-02-28 21:00:00 1 1003 b
# 8: 2014-02-28 21:00:00 2014-02-28 22:59:59 0 NA NA
# 9: 2014-02-28 22:59:59 2014-03-01 00:04:59 1 1006 c
# 10: 2014-03-01 00:04:59 2014-03-01 01:39:59 2 1006 c
# 11: 2014-03-01 00:04:59 2014-03-01 01:39:59 2 1005 b
# 12: 2014-03-01 01:39:59 2014-03-01 02:55:00 3 1006 c
# 13: 2014-03-01 01:39:59 2014-03-01 02:55:00 3 1005 b
# 14: 2014-03-01 01:39:59 2014-03-01 02:55:00 3 1007 a
# 15: 2014-03-01 02:55:00 2014-03-01 04:29:59 2 1006 c
# 16: 2014-03-01 02:55:00 2014-03-01 04:29:59 2 1007 a
# 17: 2014-03-01 04:29:59 2014-03-01 06:00:00 3 1006 c
# 18: 2014-03-01 04:29:59 2014-03-01 06:00:00 3 1007 a
# 19: 2014-03-01 04:29:59 2014-03-01 06:00:00 3 1009 b
# 20: 2014-03-01 06:00:00 2014-03-01 06:30:00 2 1006 c
# 21: 2014-03-01 06:00:00 2014-03-01 06:30:00 2 1009 b
# 22: 2014-03-01 06:30:00 2014-03-01 07:30:00 1 1009 b
# start end counts id circuit