在计算机编程艺术的草案第7.2.1.3节中,生成所有组合,Knuth引入了算法C来生成Chase序列。
他还提到了一个类似的算法(基于以下等式),使用没有源代码的索引列表(草案练习45)。
我终于找到了一个c ++版本,我认为这个版本非常难看。为了生成所有C_n ^ m组合,存储器复杂度约为3(m + 1),时间复杂度以O(m n ^ m)为界。
class chase_generator_t{
public:
using size_type = ptrdiff_t;
enum class GET : char{ VALUE, INDEX };
chase_generator_t(size_type _n) : n(_n){}
void choose(size_type _m){
m = _m;
++_m;
index.resize(_m);
threshold.resize(_m + 1);
tag.resize(_m);
for (size_type i = 0, j = n - m; i != _m; ++i){
index[i] = j + i;
tag[i] = tag_t::DECREASE;
using std::max;
threshold[i] = max(i - 1, (index[i] - 3) | 1);
}
threshold[_m] = n;
}
bool get(size_type &x, size_type &y, GET const which){
if (which == GET::VALUE) return __get<false>(x, y);
return __get<true>(x, y);
}
size_type get_n() const{
return n;
}
size_type get_m() const{
return m;
}
size_type operator[](size_t const i) const{
return index[i];
}
private:
enum class tag_t : char{ DECREASE, INCREASE };
size_type n, m;
std::vector<size_type> index, threshold;
std::vector<tag_t> tag;
template<bool GetIndex>
bool __get(size_type &x, size_type &y){
using std::max;
size_type p = 0, i, q;
find:
q = p + 1;
if (index[p] == threshold[q]){
if (q >= m) return false;
p = q;
goto find;
}
x = GetIndex ? p : index[p];
if (tag[p] == tag_t::INCREASE){
using std::min;
increase:
index[p] = min(index[p] + 2, threshold[q]);
threshold[p] = index[p] - 1;
}
else if (index[p] && (i = (index[p] - 1) & ~1) >= p){
index[p] = i;
threshold[p] = max(p - 1, (index[p] - 3) | 1);
}
else{
tag[p] = tag_t::INCREASE;
i = p | 1;
if (index[p] == i) goto increase;
index[p] = i;
threshold[p] = index[p] - 1;
}
y = index[p];
for (q = 0; q != p; ++q){
tag[q] = tag_t::DECREASE;
threshold[q] = max(q - 1, (index[q] - 3) | 1);
}
return true;
}
};
是否有人有更好的实现,即使用相同内存运行得更快或使用相同速度的更少内存?
答案 0 :(得分:0)
我认为下面的C代码更接近Knuth的想法。毫无疑问,有一些方法可以使它更优雅(特别是,我会留下一些脚手架,以防它有助于实验),尽管我怀疑数组w
是否可以被处理掉。如果由于某种原因存储非常重要,那么从a
数组中窃取符号位。
#include <stdbool.h>
#include <stdio.h>
enum {
N = 10,
T = 5
};
static void next(int a[], bool w[], int *r) {
bool found_r = false;
int j;
for (j = *r; !w[j]; j++) {
int b = a[j] + 1;
int n = a[j + 1];
if (b < (w[j + 1] ? n - (2 - (n & 1)) : n)) {
if ((b & 1) == 0 && b + 1 < n) b++;
a[j] = b;
if (!found_r) *r = j > 1 ? j - 1 : 0;
return;
}
w[j] = a[j] - 1 >= j;
if (w[j] && !found_r) {
*r = j;
found_r = true;
}
}
int b = a[j] - 1;
if ((b & 1) != 0 && b - 1 >= j) b--;
a[j] = b;
w[j] = b - 1 >= j;
if (!found_r) *r = j;
}
int main(void) {
typedef char t_less_than_n[T < N ? 1 : -1];
int a[T + 1];
bool w[T + 1];
for (int j = 0; j < T + 1; j++) {
a[j] = N - (T - j);
w[j] = true;
}
int r = 0;
do {
for (int j = T - 1; j > -1; j--) printf("%x", a[j]);
putchar('\n');
if (false) {
for (int j = T - 1; j > -1; j--) printf("%d", w[j]);
putchar('\n');
}
next(a, w, &r);
} while (a[T] == N);
}