我试图估计一个多级模型。我的代码是:
fullModel2 <- lmer(pharmexp_2001 ~ gdp_1000_gm + health_exp_per_cap_1000_gm + life_exp +
labour_cost_1000_gm + (year_gm|lowerID), data=adat, REML=F)
产生以下模型:
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: pharmexp_2001 ~ gdp_1000_gm + health_exp_per_cap_1000_gm + life_exp +
labour_cost_1000_gm + (year_gm | lowerID)
Data: adat
AIC BIC logLik deviance df.resid
1830.2 1859.9 -906.1 1812.2 191
Scaled residuals:
Min 1Q Median 3Q Max
-2.5360 -0.6853 -0.0842 0.4923 4.0051
Random effects:
Groups Name Variance Std.Dev. Corr
lowerID (Intercept) 134.6851 11.6054
year_gm 0.4214 0.6492 -1.00
Residual 487.5324 22.0801
Number of obs: 200, groups: lowerID, 2
Fixed effects:
Estimate Std. Error t value
(Intercept) -563.7924 75.4125 -7.476
gdp_1000_gm -0.9050 0.2051 -4.413
health_exp_per_cap_1000_gm 37.5394 6.3943 5.871
life_exp 8.8571 0.9498 9.326
labour_cost_1000_gm -1.3573 0.4684 -2.898
Correlation of Fixed Effects:
(Intr) g_1000 h____1 lif_xp
gdp_1000_gm -0.068
hl____1000_ 0.374 -0.254
life_exp -0.996 0.072 -0.393
lbr_c_1000_ -0.133 -0.139 -0.802 0.142
我知道随机效应相关性为-1是一个问题,但我有一个更大的问题。我必须绘制我的结果,但只需要2行:lowerID=0
和lowerID=1
时。所以我想在y轴上针对pharmaexp_2001
在x轴上绘制year
,但我只需要2行(lowerID
)。我知道我必须使用predict.merMod
,但我如何绘制这些结果,只绘制这两行?目前我的情节有21行(因为我分析了21个国家的药品支出)。
答案 0 :(得分:3)
欢迎访问网站@EszterTakács!
您只需在newdata
中指定两个ID即可。以下是基于sleepstudy
中R
数据的示例。我假设你想在y轴上绘制预测值。只需将代码替换为您的数据和变量,您将获得lowerID==0
和lowerID==1
的预测值。然后,您可以使用代码绘制两个ID的两行。
> (fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy, REML=F))
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: Reaction ~ Days + (Days | Subject)
Data: sleepstudy
AIC BIC logLik deviance
1763.9393 1783.0971 -875.9697 1751.9393
Random effects:
Groups Name Std.Dev. Corr
Subject (Intercept) 23.781
Days 5.717 0.08
Residual 25.592
Number of obs: 180, groups: Subject, 18
Fixed Effects:
(Intercept) Days
251.41 10.47
> newdata = sleepstudy[sleepstudy$Subject==308 | sleepstudy$Subject==333,]
> str(p <- predict(fm1,newdata)) # new data, all RE
Named num [1:20] 254 274 293 313 332 ...
- attr(*, "names")= chr [1:20] "1" "2" "3" "4" ...