我正在实现一个包含N台机器的小型分布式系统。它们中的每一个都从一些远程服务器接收一些数据,然后将数据传播到其他n-1个同类机器。我正在使用Boost Asio async_read和async_write来实现它。我建立了一个N = 30台机器的测试集群。当我尝试较小的日期集(每台机器接收75KB到750KB)时,程序始终有效。但当我转向一个略大的数据集(7.5MB)时,我观察到了奇怪的行为:开始时,读取和写入按预期发生,但过了一段时间,一些机器挂起而其他机器完成,挂机的机器数量每次运行都有所不同。我尝试在每个处理程序中打印出一些消息,并发现对于那些挂起的机器,async_read基本上在一段时间后基本上无法成功读取,因此之后无法继续。我检查了远程服务器,他们都写完了。我已经尝试使用strand来控制异步读写的执行顺序,我也尝试使用不同的io_services进行读写。他们都没有解决问题。我非常绝望。任何人都可以帮助我吗?
以下是执行读取和传播的类的代码:
const int TRANS_TUPLE_SIZE=15;
const int TRANS_BUFFER_SIZE=5120/TRANS_TUPLE_SIZE*TRANS_TUPLE_SIZE;
class Asio_Trans_Broadcaster
{
private:
char buffer[TRANS_BUFFER_SIZE];
int node_id;
int mpi_size;
int mpi_rank;
boost::asio::ip::tcp::socket* dbsocket;
boost::asio::ip::tcp::socket** sender_sockets;
int n_send;
boost::mutex mutex;
bool done;
public:
Asio_Trans_Broadcaster(boost::asio::ip::tcp::socket* dbskt, boost::asio::ip::tcp::socket** senderskts,
int msize, int mrank, int id)
{
dbsocket=dbskt;
count=0;
node_id=id;
mpi_size=mpi_rank=-1;
sender_sockets=senderskts;
mpi_size=msize;
mpi_rank=mrank;
n_send=-1;
done=false;
}
static std::size_t completion_condition(const boost::system::error_code& error, std::size_t bytes_transferred)
{
int remain=bytes_transferred%TRANS_TUPLE_SIZE;
if(remain==0 && bytes_transferred>0)
return 0;
else
return TRANS_BUFFER_SIZE-bytes_transferred;
}
void write_handler(const boost::system::error_code &ec, std::size_t bytes_transferred)
{
int n=-1;
mutex.lock();
n_send--;
n=n_send;
mutex.unlock();
fprintf(stdout, "~~~~~~ @%d, write_handler: %d bytes, copies_to_send: %d\n",
node_id, bytes_transferred, n);
if(n==0 && !done)
boost::asio::async_read(*dbsocket,
boost::asio::buffer(buffer, TRANS_BUFFER_SIZE),
Asio_Trans_Broadcaster::completion_condition, boost::bind(&Asio_Trans_Broadcaster::broadcast_handler, this,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
void broadcast_handler(const boost::system::error_code &ec, std::size_t bytes_transferred)
{
fprintf(stdout, "@%d, broadcast_handler: %d bytes, mpi_size:%d, mpi_rank: %d\n", node_id, bytes_transferred, mpi_size, mpi_rank);
if (!ec)
{
int pos=0;
while(pos<bytes_transferred && pos<TRANS_BUFFER_SIZE)
{
int id=-1;
memcpy(&id, &buffer[pos], 4);
if(id<0)
{
done=true;
fprintf(stdout, "@%d, broadcast_handler: done!\n", mpi_rank);
break;
}
pos+=TRANS_TUPLE_SIZE;
}
mutex.lock();
n_send=mpi_size-1;
mutex.unlock();
for(int i=0; i<mpi_size; i++)
if(i!=mpi_rank)
{
boost::asio::async_write(*sender_sockets[i], boost::asio::buffer(buffer, bytes_transferred),
boost::bind(&Asio_Trans_Broadcaster::write_handler, this,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
}
else
{
cerr<<mpi_rank<<" error: "<<ec.message()<<endl;
delete this;
}
}
void broadcast()
{
boost::asio::async_read(*dbsocket,
boost::asio::buffer(buffer, TRANS_BUFFER_SIZE),
Asio_Trans_Broadcaster::completion_condition, boost::bind(&Asio_Trans_Broadcaster::broadcast_handler, this,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));
}
};
以下是每台机器上运行的主要代码:
int N=30;
boost::asio::io_service* sender_io_service=new boost::asio::io_service();
boost::asio::io_service::work* p_work=new boost::asio::io_service::work(*sender_io_service);
boost::thread_group send_thread_pool;
for(int i=0; i<NUM_THREADS; i++)
{
send_thread_pool.create_thread( boost::bind( & boost::asio::io_service::run, sender_io_service ) );
}
boost::asio::io_service* receiver_io_service=new boost::asio::io_service();
shared_ptr<boost::asio::io_service::work> p_work2(new boost::asio::io_service::work(*receiver_io_service));
boost::thread_group thread_pool2;
thread_pool2.create_thread( boost::bind( & boost::asio::io_service::run, receiver_io_service) );
boost::asio::ip::tcp::socket* receiver_socket;
//establish nonblocking connection with remote server
AsioConnectToRemote(5000, 1, receiver_io_service, receiver_socket, true);
boost::asio::ip::tcp::socket* send_sockets[N];
//establish blocking connection with other machines
hadoopNodes = SetupAsioConnectionsWIthOthers(sender_io_service, send_sockets, hostFileName, mpi_rank, mpi_size, 3000, false);
Asio_Trans_Broadcaster* db_receiver=new Asio_Trans_Broadcaster(receiver_socket, send_sockets,
mpi_size, mpi_rank, mpi_rank);
db_receiver->broadcast();
p_work2.reset();
thread_pool2.join_all();
delete p_work;
send_thread_pool.join_all();
答案 0 :(得分:2)
我不知道你的代码想要实现什么。丢失的位太多了。
当然,如果任务是在网络套接字上异步发送/接收流量,那么Asio就是这样的。很难看出你的代码有什么特别之处。
我建议清理更明显的问题:
error_code
- s!)%lu
size_t
从不假设对象的大小:
memcpy(&id, &trans_buffer[pos], sizeof(id));
想到它,看起来缓冲区的索引无论如何都是不安全的:
while(pos < bytes_transferred && pos < TRANS_BUFFER_SIZE)
{
int id = -1;
memcpy(&id, &buffer[pos], sizeof(id));
如果是pos == TRANS_BUFFER_SIZE-1
这里memcpy调用Undefined Behavour ...
为什么会有这么多new
?你正在为你的代码邀请一大堆bug。好像内存管理不是低级编码的致命弱点。使用值或共享指针。 从不delete this
。以往 [1]
为什么会有如此多的重复代码?为什么一个线程池以sender
和另一个thread_pool2
命名?其中包含1个主题。嗯?为什么有一个work
项作为原始指针,另一个作为shared_ptr
?
你可以只是:
struct service_wrap {
service_wrap(int threads) {
while(threads--)
pool.create_thread(boost::bind(&boost::asio::io_service::run, boost::ref(io_service)));
}
~service_wrap() {
io_service.post(boost::bind(&service_wrap::stop, this));
pool.join_all();
}
private: // mind the initialization order!
boost::asio::io_service io_service;
boost::optional<boost::asio::io_service::work> work;
boost::thread_group pool;
void stop() {
work = boost::none;
}
};
所以你可以写一下:
service_wrap senders(NUM_THREADS);
service_wrap receivers(1);
哇。你看到了吗?不再有错误的机会。如果您修复了一个池,则会自动修复另一个池。第一个delete
第二个.reset()
项目不再work
。简而言之:不再是混乱的代码,也不再那么复杂。
使用异常安全锁定保护:
int local_n_send = -1; // not clear naming
{
boost::lock_guard<boost::mutex> lk(mutex);
n_send--;
local_n_send = n_send;
}
broadcast
的正文在write_handler()
中完全重复。为什么不直接称呼它:
if(local_n_send == 0 && !done)
broadcast();
我认为仍然存在竞争条件 - 而不是访问n_send
本身的数据竞争,但如果n_send
在broadcast()
之后达到零,则重新广播的决定可能是错误的。锁被释放。现在,由于void write_handler(const error_code &ec, size_t bytes_transferred) {
boost::lock_guard<boost::mutex> lk(mutex);
if(!(done || --n_send))
broadcast();
}
只进行异步操作,你可以在锁定下完成它并摆脱竞争条件:
#include <boost/asio.hpp>
#include <boost/thread.hpp>
#include <boost/array.hpp>
#include <boost/make_shared.hpp>
#include <boost/ptr_container/ptr_vector.hpp>
#include <iostream>
const/*expr*/ int TRANS_TUPLE_SIZE = 15;
const/*expr*/ int TRANS_BUFFER_SIZE = 5120 / TRANS_TUPLE_SIZE * TRANS_TUPLE_SIZE;
namespace AsioTrans
{
using boost::system::error_code;
using namespace boost::asio;
typedef ip::tcp::socket socket_t;
typedef boost::ptr_vector<socket_t> socket_list;
class Broadcaster
{
private:
boost::array<char, TRANS_BUFFER_SIZE> trans_buffer;
int node_id;
int mpi_rank;
socket_t& dbsocket;
socket_list& sender_sockets;
int n_send;
boost::mutex mutex;
bool done;
public:
Broadcaster(
socket_t& dbskt,
socket_list& senderskts,
int mrank,
int id) :
node_id(id),
mpi_rank(mrank),
dbsocket(dbskt),
sender_sockets(senderskts),
n_send(-1),
done(false)
{
// count=0;
}
static size_t completion_condition(const error_code& error, size_t bytes_transferred)
{
// TODO FIXME handler error_code here
int remain = bytes_transferred % TRANS_TUPLE_SIZE;
if(bytes_transferred && !remain)
{
return 0;
}
else
{
return TRANS_BUFFER_SIZE - bytes_transferred;
}
}
void write_handler(const error_code &ec, size_t bytes_transferred)
{
// TODO handle errors
// TODO check bytes_transferred
boost::lock_guard<boost::mutex> lk(mutex);
if(!(done || --n_send))
broadcast();
}
void broadcast_handler(const error_code &ec, size_t bytes_transferred)
{
fprintf(stdout, "@%d, broadcast_handler: %lu bytes, mpi_size:%lu, mpi_rank: %d\n", node_id, bytes_transferred, sender_sockets.size(), mpi_rank);
if(!ec)
{
for(size_t pos = 0; (pos < bytes_transferred && pos < TRANS_BUFFER_SIZE); pos += TRANS_TUPLE_SIZE)
{
int id = -1;
memcpy(&id, &trans_buffer[pos], sizeof(id));
if(id < 0)
{
done = true;
fprintf(stdout, "@%d, broadcast_handler: done!\n", mpi_rank);
break;
}
}
{
boost::lock_guard<boost::mutex> lk(mutex);
n_send = sender_sockets.size() - 1;
}
for(int i = 0; size_t(i) < sender_sockets.size(); i++)
{
if(i != mpi_rank)
{
async_write(
sender_sockets[i],
buffer(trans_buffer, bytes_transferred),
boost::bind(&Broadcaster::write_handler, this, placeholders::error, placeholders::bytes_transferred));
}
}
}
else
{
std::cerr << mpi_rank << " error: " << ec.message() << std::endl;
delete this;
}
}
void broadcast()
{
async_read(
dbsocket,
buffer(trans_buffer),
Broadcaster::completion_condition,
boost::bind(&Broadcaster::broadcast_handler, this,
placeholders::error,
placeholders::bytes_transferred));
}
};
struct service_wrap {
service_wrap(int threads) {
while(threads--)
_pool.create_thread(boost::bind(&io_service::run, boost::ref(_service)));
}
~service_wrap() {
_service.post(boost::bind(&service_wrap::stop, this));
_pool.join_all();
}
io_service& service() { return _service; }
private: // mind the initialization order!
io_service _service;
boost::optional<io_service::work> _work;
boost::thread_group _pool;
void stop() {
_work = boost::none;
}
};
extern void AsioConnectToRemote(int, int, io_service&, socket_t&, bool);
extern void SetupAsioConnectionsWIthOthers(io_service&, socket_list&, std::string, int, bool);
}
int main()
{
using namespace AsioTrans;
// there's no use in increasing #threads unless there are blocking operations
service_wrap senders(boost::thread::hardware_concurrency());
service_wrap receivers(1);
socket_t receiver_socket(receivers.service());
AsioConnectToRemote(5000, 1, receivers.service(), receiver_socket, true);
socket_list send_sockets(30);
/*hadoopNodes =*/ SetupAsioConnectionsWIthOthers(senders.service(), send_sockets, "hostFileName", 3000, false);
int mpi_rank = send_sockets.size();
AsioTrans::Broadcaster db_receiver(receiver_socket, send_sockets, mpi_rank, mpi_rank);
db_receiver.broadcast();
}
Woop woop。那是现在的三行代码。更少的代码是更少的错误。
我的猜测是,如果你像这样勤奋地擦洗代码,你将不可避免地找到你的线索。想想它就像你会找到一个丢失的结婚戒指:你不会留下一堆乱七八糟的东西。相反,你会从一个房间走到另一个房间并整理一切。如果需要,首先将所有东西“扔出去”。
Iff 你可以让这个东西自包含/和/再现,我甚至会为你进一步调试它!
干杯
以下是我在查看代码时所做的出发点: Compiling on Coliru
{{1}}
[1] 没有例外。除非无例外规则有例外。异常ception。