如何在聚会包中处理Ctree中的内存问题?

时间:2014-03-25 13:38:28

标签: r

我正在使用Party R包的ctree方法来生成决策树。

我的数据集包含大约22列和650000行数据。我使用memory.limit命令为我的r会话分配了10GB的内存。

我有一个2.3 GHz的i3处理器和6GB的RAM。我在这做错了什么。

我得到的错误是

Calloc could not allocate memory (6223507 of 8 bytes)

1 个答案:

答案 0 :(得分:2)

好的,我终于找到了一些时间来做这件事。它不是太优雅,但应该有效。 首先,加载库和下面的函数(您需要安装data.table包)

library(data.table)
library(party)

WeightFunc <- function(data, DV){
# Creating some paste function in order to paste unique paths
paste2 <- function(x) paste(x, collapse = ",")
ignore <- DV

# Creating unique paths
test3 <- apply(data[setdiff(names(data),ignore)], 1, paste2)

# Binding the unique paths vector back to the original data
data <- cbind(data, test3)
#data

# Getting the values of each explaining variable per each unique path
dt <- data.table(data[setdiff(names(data), ignore)])
dt.out <- as.data.frame(dt[, head(.SD, 1), by = test3])

# Creating dummy variables per each value of our dependable variable for further calculations
DVLvs <- as.character(unique(data[, DV]))
data[, DVLvs[1]] <- ifelse(data[, DV] == DVLvs[1], 1, 0)
data[, DVLvs[2]] <- ifelse(data[, DV] == DVLvs[2], 1, 0)
data[, DVLvs[3]] <- ifelse(data[, DV] == DVLvs[3], 1, 0)

# Summing dummy variables per unique path
dt <- data.table(data[c("test3", DVLvs)])
dt.out2 <- as.data.frame(dt[, lapply(.SD, sum), by = test3])

# Binding unique pathes with sums
dt.out2$test3 <- dt.out$test3 <- NULL
test <- cbind(dt.out, dt.out2)

# Duplicating the data in order to create a weights for every level of expalined variable
test2 <- test[rep(1:nrow(test),each = 3), ]  
test2 <- cbind(test2, AdjDV = DVLvs)
test2$Weights <- ifelse(is.element(seq(1:nrow(test2)), grep("[.]1", rownames(test2))), test2[, DVLvs[2]], 
                        ifelse(is.element(seq(1:nrow(test2)), grep("[.]2",rownames(test2))), test2[, DVLvs[3]], test2[, DVLvs[1]]))

# Deleting unseassery column
test2[, DVLvs[1]] <- test2[, DVLvs[2]] <- test2[, DVLvs[3]] <- NULL

return(test2)
}

现在在数据集上运行此功能,其中data是您的数据,DV是您解释的变量名称(引号)并将其保存在新数据集中,例如:

Newdata <- WeightFunc(data = Mydata, DV = "Success")

现在,如果你有许多独特的方法,这个过程可能需要一段时间,但它不应该使你的记忆过载。如果您没有太多的唯一路径,此功能应该将您的数据集减少数十甚至数百次。此外,此功能仅适用于3级因子解释变量(就像您所拥有的那样)。

之后,您可以像以前一样运行ctree,但使用新数据和新解释的变量(,将被称为 AdjDV)和wiegths参数调用 Weights。在运行Weights时,您还必须从数据集中排除ctree。 像那样:

ct <- ctree(AdjDV ~., data = Newdata[setdiff(names(Newdata), "Weights")], weights = Newdata$Weights)