给定两个rgb颜色和一个矩形,我能够创建一个基本的线性渐变。这个blog post给出了如何创建它的非常好的解释。但是我想在这个算法中添加一个变量angle。我想创建线性渐变,我可以指定颜色的角度。
例如,我有一个矩形(400x100)。从颜色为红色(255,0,0),颜色为绿色(0,255,0),角度为0°,因此我将具有以下颜色渐变。
鉴于我有相同的矩形,从颜色到颜色。但这次我将角度改为45°。所以我应该有以下颜色渐变。
答案 0 :(得分:8)
这非常简单。除了角度,你实际上还需要一个参数,即梯度应该是多么紧/宽。让我们改为只使用两点:
__D
__--
__--
__--
__--
M
其中M是渐变的中点(红色和绿色之间),D表示方向和距离。因此,渐变变为:
M'
| __D
| __--
| __--
| __--
| __--
M
__-- |
__-- |
__-- |
__-- |
D'-- |
M"
这意味着,沿着向量D'D
,您可以从红色变为绿色,如您所知,线性变化。沿着矢量M'M"
,您可以保持颜色不变。
这就是理论。现在实现取决于您实际绘制像素的方式。我们不假设你说你想逐个像素地决定颜色(所以你可以按任何像素顺序绘制。)
那很简单!让我们来说明一点:
M'
| SA __D
__--| __--
P-- |__ A __--
| -- /| \ __--
| -- | |_--
| --M
|__-- |
__--CA |
__-- |
__-- |
D'-- |
M"
点P,角度为A
,坐标系由M
和D
定义。我们知道,在向量M'M"
中,颜色没有变化,因此sin(A)
没有任何意义。相反,cos(A)
相对于像素颜色应该向D
或D'
显示相对多远。点CA
显示|PM|cos(A)
,表示P
在M
和D
定义的行上的映射,或详细说明行PM
的长度1}}乘以cos(A)
。
所以算法如下
CA
D
更远,那肯定是绿色的。如果在D'
之前,肯定是红色。|D'CA|/|D'D|
根据您的评论,如果您想要确定画布大小的宽度,您可以根据输入角度和画布大小轻松计算D
,但我个人建议使用单独的参数。
答案 1 :(得分:6)
我想指出当人们尝试平均r
,g
和b
分量时,颜色混合中常见的错误:
R = (R1 + R2) / 2;
G = (G1 + G2) / 2;
B = (B1 + B2) / 2;
您可以观看有关该主题的优秀4分钟物理视频:
简短版本是试图通过平均组件来混合两种颜色是错误的:
R = R1*(1-mix) + R2*mix;
G = G1*(1-mix) + G2*mix;
B = B1*(1-mix) + B2*mix;
问题是计算机上的RGB颜色位于 sRGB 颜色空间中。并且这些数值具有约 2.4的伽玛。为了正确混合颜色,您必须先撤消此伽玛调整:
不应用反伽马,混合颜色比它们应该更暗。这可以在并排的颜色梯度实验中看出。
而不是天真:
//This is the wrong algorithm. Don't do this
Color ColorMixWrong(Color c1, Color c2, Single mix)
{
//Mix [0..1]
// 0 --> all c1
// 0.5 --> equal mix of c1 and c2
// 1 --> all c2
Color result;
result.r = c1.r*(1-mix) + c2.r*(mix);
result.g = c1.g*(1-mix) + c2.g*(mix);
result.b = c1.b*(1-mix) + c2.b*(mix);
return result;
}
正确的形式是:
//This is the wrong algorithm. Don't do this
Color ColorMix(Color c1, Color c2, Single mix)
{
//Mix [0..1]
// 0 --> all c1
// 0.5 --> equal mix of c1 and c2
// 1 --> all c2
//Invert sRGB gamma compression
c1 = InverseSrgbCompanding(c1);
c2 = InverseSrgbCompanding(c2);
result.r = c1.r*(1-mix) + c2.r*(mix);
result.g = c1.g*(1-mix) + c2.g*(mix);
result.b = c1.b*(1-mix) + c2.b*(mix);
//Reapply sRGB gamma compression
result = SrgbCompanding(result);
return result;
}
sRGB的伽玛调整不仅仅是2.4。它们实际上有一个接近黑色的线性部分 - 所以它是一个分段函数。
Color InverseSrgbCompanding(Color c)
{
//Convert color from 0..255 to 0..1
Single r = c.r / 255;
Single g = c.g / 255;
Single b = c.b / 255;
//Inverse Red, Green, and Blue
if (r > 0.04045) r = Power((r+0.055)/1.055, 2.4) else r = r / 12.92;
if (g > 0.04045) g = Power((g+0.055)/1.055, 2.4) else g = g / 12.92;
if (b > 0.04045) b = Power((b+0.055)/1.055, 2.4) else b = b / 12.92;
//return new color. Convert 0..1 back into 0..255
Color result;
result.r = r*255;
result.g = g*255;
result.b = b*255;
return result;
}
然后你重新应用压缩扩展:
Color SrgbCompanding(Color c)
{
//Convert color from 0..255 to 0..1
Single r = c.r / 255;
Single g = c.g / 255;
Single b = c.b / 255;
//Apply companding to Red, Green, and Blue
if (r > 0.0031308) r = 1.055*Power(r, 1/2.4)-0.055 else r = r * 12.92;
if (g > 0.0031308) g = 1.055*Power(g, 1/2.4)-0.055 else g = g * 12.92;
if (b > 0.0031308) b = 1.055*Power(b, 1/2.4)-0.055 else b = b * 12.92;
//return new color. Convert 0..1 back into 0..255
Color result;
result.r = r*255;
result.g = g*255;
result.b = b*255;
return result;
}
我测试了@MarkRansom注释,当颜色等于RGB总值时,线性RGB空间中的颜色混合是好的;但线性混合比例似乎不是线性的 - 特别是对于黑白情况。
所以我尝试混合使用Lab颜色空间,正如我的直觉所建议的那样(as well as this photography stackexchange answer):
答案 2 :(得分:6)
您的问题实际上由两部分组成:
渐变的强度在感知颜色空间中必须是恒定的,否则在渐变中的点处看起来会显得不自然地暗或亮。基于sRGB值的简单插值,您可以在渐变中轻松地看到这一点,尤其是中间的红绿渐变太暗。在线性值而不是伽马校正值上使用插值可以使红绿渐变更好,但是以背白渐变为代价。通过将光强度与颜色分开,您可以获得两全其美的效果。
通常在需要感知色彩空间时,会提出Lab color space。我认为有时它会走得太远,因为它试图适应蓝色比其他颜色(如黄色)的等效强度更暗的感觉。这是事实,但是我们习惯于在自然环境中看到这种效果,并且在渐变中你会得到过度补偿。
研究人员通过实验确定power-law function of 0.43最适合将灰度光强度与感知亮度联系起来。
我已经把Ian Boyd准备的精彩样本带到这里,并在最后添加了我自己提出的方法。我希望你会同意这种新方法在所有情况下都是优越的。
Algorithm MarkMix
Input:
color1: Color, (rgb) The first color to mix
color2: Color, (rgb) The second color to mix
mix: Number, (0..1) The mix ratio. 0 ==> pure Color1, 1 ==> pure Color2
Output:
color: Color, (rgb) The mixed color
//Convert each color component from 0..255 to 0..1
r1, g1, b1 ← Normalize(color1)
r2, g2, b2 ← Normalize(color1)
//Apply inverse sRGB companding to convert each channel into linear light
r1, g1, b1 ← sRGBInverseCompanding(r1, g1, b1)
r2, g2, b2 ← sRGBInverseCompanding(r2, g2, b2)
//Linearly interpolate r, g, b values using mix (0..1)
r ← LinearInterpolation(r1, r2, mix)
g ← LinearInterpolation(g1, g2, mix)
b ← LinearInterpolation(b1, b2, mix)
//Compute a measure of brightness of the two colors using empirically determined gamma
gamma ← 0.43
brightness1 ← Pow(r1+g1+b1, gamma)
brightness2 ← Pow(r2+g2+b2, gamma)
//Interpolate a new brightness value, and convert back to linear light
brightness ← LinearInterpolation(brightness1, brightness2, mix)
intensity ← Pow(brightness, 1/gamma)
//Apply adjustment factor to each rgb value based
if ((r+g+b) != 0) then
factor ← (intensity / (r+g+b))
r ← r * factor
g ← g * factor
b ← b * factor
end if
//Apply sRGB companding to convert from linear to perceptual light
r, g, b ← sRGBCompanding(r, g, b)
//Convert color components from 0..1 to 0..255
Result ← MakeColor(r, g, b)
End Algorithm MarkMix
这是Python中的代码:
def all_channels(func):
def wrapper(channel, *args, **kwargs):
try:
return func(channel, *args, **kwargs)
except TypeError:
return tuple(func(c, *args, **kwargs) for c in channel)
return wrapper
@all_channels
def to_sRGB_f(x):
''' Returns a sRGB value in the range [0,1]
for linear input in [0,1].
'''
return 12.92*x if x <= 0.0031308 else (1.055 * (x ** (1/2.4))) - 0.055
@all_channels
def to_sRGB(x):
''' Returns a sRGB value in the range [0,255]
for linear input in [0,1]
'''
return int(255.9999 * to_sRGB_f(x))
@all_channels
def from_sRGB(x):
''' Returns a linear value in the range [0,1]
for sRGB input in [0,255].
'''
x /= 255.0
if x <= 0.04045:
y = x / 12.92
else:
y = ((x + 0.055) / 1.055) ** 2.4
return y
def all_channels2(func):
def wrapper(channel1, channel2, *args, **kwargs):
try:
return func(channel1, channel2, *args, **kwargs)
except TypeError:
return tuple(func(c1, c2, *args, **kwargs) for c1,c2 in zip(channel1, channel2))
return wrapper
@all_channels2
def lerp(color1, color2, frac):
return color1 * (1 - frac) + color2 * frac
def perceptual_steps(color1, color2, steps):
gamma = .43
color1_lin = from_sRGB(color1)
bright1 = sum(color1_lin)**gamma
color2_lin = from_sRGB(color2)
bright2 = sum(color2_lin)**gamma
for step in range(steps):
intensity = lerp(bright1, bright2, step, steps) ** (1/gamma)
color = lerp(color1_lin, color2_lin, step, steps)
if sum(color) != 0:
color = [c * intensity / sum(color) for c in color]
color = to_sRGB(color)
yield color
现在问题的第2部分。您需要一个等式来定义表示渐变中点的线,以及与线对应于渐变的端点颜色的线的距离。将端点放在矩形的最远角是很自然的,但是在问题的例子中判断不是你做的。我选择了71像素的距离来近似这个例子。
生成渐变的代码需要稍微改变上面显示的内容,以便更灵活一些。不是将梯度分成固定数量的步骤,而是根据参数t
在连续统计上计算,范围介于0.0和1.0之间。
class Line:
''' Defines a line of the form ax + by + c = 0 '''
def __init__(self, a, b, c=None):
if c is None:
x1,y1 = a
x2,y2 = b
a = y2 - y1
b = x1 - x2
c = x2*y1 - y2*x1
self.a = a
self.b = b
self.c = c
self.distance_multiplier = 1.0 / sqrt(a*a + b*b)
def distance(self, x, y):
''' Using the equation from
https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line#Line_defined_by_an_equation
modified so that the distance can be positive or negative depending
on which side of the line it's on.
'''
return (self.a * x + self.b * y + self.c) * self.distance_multiplier
class PerceptualGradient:
GAMMA = .43
def __init__(self, color1, color2):
self.color1_lin = from_sRGB(color1)
self.bright1 = sum(self.color1_lin)**self.GAMMA
self.color2_lin = from_sRGB(color2)
self.bright2 = sum(self.color2_lin)**self.GAMMA
def color(self, t):
''' Return the gradient color for a parameter in the range [0.0, 1.0].
'''
intensity = lerp(self.bright1, self.bright2, t) ** (1/self.GAMMA)
col = lerp(self.color1_lin, self.color2_lin, t)
total = sum(col)
if total != 0:
col = [c * intensity / total for c in col]
col = to_sRGB(col)
return col
def fill_gradient(im, gradient_color, line_distance=None, max_distance=None):
w, h = im.size
if line_distance is None:
def line_distance(x, y):
return x - ((w-1) / 2.0) # vertical line through the middle
ul = line_distance(0, 0)
ur = line_distance(w-1, 0)
ll = line_distance(0, h-1)
lr = line_distance(w-1, h-1)
if max_distance is None:
low = min([ul, ur, ll, lr])
high = max([ul, ur, ll, lr])
max_distance = min(abs(low), abs(high))
pix = im.load()
for y in range(h):
for x in range(w):
dist = line_distance(x, y)
ratio = 0.5 + 0.5 * dist / max_distance
ratio = max(0.0, min(1.0, ratio))
if ul > ur: ratio = 1.0 - ratio
pix[x, y] = gradient_color(ratio)
>>> w, h = 406, 101
>>> im = Image.new('RGB', [w, h])
>>> line = Line([w/2 - h/2, 0], [w/2 + h/2, h-1])
>>> grad = PerceptualGradient([252, 13, 27], [41, 253, 46])
>>> fill_gradient(im, grad.color, line.distance, 71)
以上是上述结果:
答案 3 :(得分:0)
@ user2799037的评论完全正确: 与前一行相比,每一行都向右移动了一些像素。
实际常数可以计算为您指定的角度的正切值。