最近我承担了从ncbi数据库下载大量文件的任务。但是我遇到过必须创建多个数据库的问题。此代码可用于从ncbi网站下载所有病毒。我的问题是有没有办法加快下载这些文件的过程。
目前该程序的运行时间超过5小时。我已经研究过多线程并且永远无法使其工作,因为其中一些文件需要超过10秒才能下载,而且我不知道如何处理停滞。 (编程新手)还有一种处理urllib2.HTTPError的方法:HTTP错误502:错误的网关。我有时会使用retstart和retmax的某些组合。这会导致程序崩溃,我必须通过更改for语句中的0来从其他位置重新启动下载。
import urllib2
from BeautifulSoup import BeautifulSoup
#This is the SearchQuery into NCBI. Spaces are replaced with +'s.
SearchQuery = 'viruses[orgn]+NOT+Retroviridae[orgn]'
#This is the Database that you are searching.
database = 'protein'
#This is the output file for the data
output = 'sample.fasta'
#This is the base url for NCBI eutils.
base = 'http://eutils.ncbi.nlm.nih.gov/entrez/eutils/'
#Create the search string from the information above
esearch = 'esearch.fcgi?db='+database+'&term='+SearchQuery+'&usehistory=y'
#Create your esearch url
url = base + esearch
#Fetch your esearch using urllib2
print url
content = urllib2.urlopen(url)
#Open url in BeautifulSoup
doc = BeautifulSoup(content)
#Grab the amount of hits in the search
Count = int(doc.find('count').string)
#Grab the WebEnv or the history of this search from usehistory.
WebEnv = doc.find('webenv').string
#Grab the QueryKey
QueryKey = doc.find('querykey').string
#Set the max amount of files to fetch at a time. Default is 500 files.
retmax = 10000
#Create the fetch string
efetch = 'efetch.fcgi?db='+database+'&WebEnv='+WebEnv+'&query_key='+QueryKey
#Select the output format and file format of the files.
#For table visit: http://www.ncbi.nlm.nih.gov/books/NBK25499/table/chapter4.chapter4_table1
format = 'fasta'
type = 'text'
#Create the options string for efetch
options = '&rettype='+format+'&retmode='+type
#For statement 0 to Count counting by retmax. Use xrange over range
for i in xrange(0,Count,retmax):
#Create the position string
poision = '&retstart='+str(i)+'&retmax='+str(retmax)
#Create the efetch URL
url = base + efetch + poision + options
print url
#Grab the results
response = urllib2.urlopen(url)
#Write output to file
with open(output, 'a') as file:
for line in response.readlines():
file.write(line)
#Gives a sense of where you are
print Count - i - retmax
答案 0 :(得分:4)
使用多个线程下载文件:
#!/usr/bin/env python
import shutil
from contextlib import closing
from multiprocessing.dummy import Pool # use threads
from urllib2 import urlopen
def generate_urls(some, params): #XXX pass whatever parameters you need
for restart in range(*params):
# ... generate url, filename
yield url, filename
def download((url, filename)):
try:
with closing(urlopen(url)) as response, open(filename, 'wb') as file:
shutil.copyfileobj(response, file)
except Exception as e:
return (url, filename), repr(e)
else: # success
return (url, filename), None
def main():
pool = Pool(20) # at most 20 concurrent downloads
urls = generate_urls(some, params)
for (url, filename), error in pool.imap_unordered(download, urls):
if error is not None:
print("Can't download {url} to {filename}, "
"reason: {error}".format(**locals())
if __name__ == "__main__":
main()
答案 1 :(得分:0)
您应该使用多线程,这是下载任务的正确方法。
"these files take more than 10seconds to download and I do not know how to handle stalling",
我不认为这会是一个问题,因为Python的多线程会处理这个问题,或者我宁愿说多线程只是为了这种I / O绑定工作。当一个线程等待下载完成时,CPU将让其他线程完成它们的工作。
无论如何,你最好至少试着看看会发生什么。
答案 2 :(得分:0)
实现任务的两种方法。 1.使用进程代替线程,多进程是您应该使用的模块。 2.使用基于事件的,gevent是正确的模块。
502错误不是您的脚本错误。简单地说,可以使用以下模式进行重试
try_count = 3
while try_count > 0:
try:
download_task()
except urllib2.HTTPError:
clean_environment_for_retry()
try_count -= 1
在except行中,您可以根据具体的HTTP状态代码细化细节以执行特定的操作。