我正在使用Runge-Kutta进行模拟。每次都需要两个独立变量的步骤二FFT,它们可以并行化。我实现了这样的代码:
from multiprocessing import Pool
import numpy as np
pool = Pool(processes=2) # I like to calculate only 2 FFTs parallel
# in every time step, therefor 2 processes
def Splitter(args):
'''I have to pass 2 arguments'''
return makeSomething(*args):
def makeSomething(a,b):
'''dummy function instead of the one with the FFT'''
return a*b
def RungeK():
# ...
# a lot of code which create the vectors A and B and calculates
# one Kunge-Kutta step for them
# ...
n = 20 # Just something for the example
A = np.arange(50000)
B = np.ones_like(A)
for i in xrange(n): # loop over the time steps
A *= np.mean(B)*B - A
B *= np.sqrt(A)
results = pool.map(Splitter,[(A,3),(B,2)])
A = results[0]
B = results[1]
print np.mean(A) # Some output
print np.max(B)
if __name__== '__main__':
RungeK()
不幸的是,python在到达循环后会生成无限数量的进程。在看起来只有两个进程正在运行之前。我的记忆也填满了。添加
pool.close()
pool.join()
循环后面的并没有解决我的问题,把它放在循环中对我来说毫无意义。希望你能帮忙。
答案 0 :(得分:2)
将池的创建移动到RungeK
函数;
def RungeK():
# ...
# a lot of code which create the vectors A and B and calculates
# one Kunge-Kutta step for them
# ...
pool = Pool(processes=2)
n = 20 # Just something for the example
A = np.arange(50000)
B = np.ones_like(A)
for i in xrange(n): # loop over the time steps
A *= np.mean(B)*B - A
B *= np.sqrt(A)
results = pool.map(Splitter, [(A, 3), (B, 2)])
A = results[0]
B = results[1]
pool.close()
print np.mean(A) # Some output
print np.max(B)
或者,将它放在主块中。
这可能是多处理工作方式的副作用。例如。在MS窗口上,您需要能够导入主模块而不会产生副作用(比如创建新进程)。