检测两个重合线段的重合子集

时间:2010-02-12 23:45:43

标签: c# .net graphics geometry gdi+

这个问题与:

有关

但请注意,在大多数解决方案中,一个有趣的子问题被完全掩盖,即使有三个子案例,它们也只是为了重合而返回null:

  • 巧合,但不重叠
  • 只接触点和巧合
  • 重叠/重合线子段

例如,我们可以像这样设计一个C#函数:

public static PointF[] Intersection(PointF a1, PointF a2, PointF b1, PointF b2)

其中(a1,a2)是一个线段而(b1,b2)是另一个线段。

此功能需要涵盖大多数实现或解释所掩盖的所有奇怪情况。为了解释重合线的奇怪性,该函数可以返回PointF的数组:

  • 零结果点(或null)如果线条平行或不相交(无限线相交但线段不相交,或线条平行
  • 一个结果点(包含交叉点位置),如果它们相交或者它们重合一点
  • 两个结果点(对于重叠部分线段)如果两条线重合

4 个答案:

答案 0 :(得分:14)

    // port of this JavaScript code with some changes:
    //   http://www.kevlindev.com/gui/math/intersection/Intersection.js
    // found here:
    //   http://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect/563240#563240

public class Intersector
{
    static double MyEpsilon = 0.00001;

    private static float[] OverlapIntervals(float ub1, float ub2)
    {
        float l = Math.Min(ub1, ub2);
        float r = Math.Max(ub1, ub2);
        float A = Math.Max(0, l);
        float B = Math.Min(1, r);
        if (A > B) // no intersection
            return new float[] { };
        else if (A == B)
            return new float[] { A };
        else // if (A < B)
            return new float[] { A, B };
    }

    // IMPORTANT: a1 and a2 cannot be the same, e.g. a1--a2 is a true segment, not a point
    // b1/b2 may be the same (b1--b2 is a point)
    private static PointF[] OneD_Intersection(PointF a1, PointF a2, PointF b1, PointF b2)
    {
        //float ua1 = 0.0f; // by definition
        //float ua2 = 1.0f; // by definition
        float ub1, ub2;

        float denomx = a2.X - a1.X;
        float denomy = a2.Y - a1.Y;

        if (Math.Abs(denomx) > Math.Abs(denomy))
        {
            ub1 = (b1.X - a1.X) / denomx;
            ub2 = (b2.X - a1.X) / denomx;
        }
        else
        {
            ub1 = (b1.Y - a1.Y) / denomy;
            ub2 = (b2.Y - a1.Y) / denomy;
        }

        List<PointF> ret = new List<PointF>();
        float[] interval = OverlapIntervals(ub1, ub2);
        foreach (float f in interval)
        {
            float x = a2.X * f + a1.X * (1.0f - f);
            float y = a2.Y * f + a1.Y * (1.0f - f);
            PointF p = new PointF(x, y);
            ret.Add(p);
        }
        return ret.ToArray();
    }

    private static bool PointOnLine(PointF p, PointF a1, PointF a2)
    {
        float dummyU = 0.0f;
        double d = DistFromSeg(p, a1, a2, MyEpsilon, ref dummyU);
        return d < MyEpsilon;
    }

    private static double DistFromSeg(PointF p, PointF q0, PointF q1, double radius, ref float u)
    {
        // formula here:
        //http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
        // where x0,y0 = p
        //       x1,y1 = q0
        //       x2,y2 = q1
        double dx21 = q1.X - q0.X;
        double dy21 = q1.Y - q0.Y;
        double dx10 = q0.X - p.X;
        double dy10 = q0.Y - p.Y;
        double segLength = Math.Sqrt(dx21 * dx21 + dy21 * dy21);
        if (segLength < MyEpsilon)
            throw new Exception("Expected line segment, not point.");
        double num = Math.Abs(dx21 * dy10 - dx10 * dy21);
        double d = num / segLength;
        return d;
    }

    // this is the general case. Really really general
    public static PointF[] Intersection(PointF a1, PointF a2, PointF b1, PointF b2)
    {
        if (a1.Equals(a2) && b1.Equals(b2))
        {
            // both "segments" are points, return either point
            if (a1.Equals(b1))
                return new PointF[] { a1 };
            else // both "segments" are different points, return empty set
                return new PointF[] { };
        }
        else if (b1.Equals(b2)) // b is a point, a is a segment
        {
            if (PointOnLine(b1, a1, a2))
                return new PointF[] { b1 };
            else
                return new PointF[] { };
        }
        else if (a1.Equals(a2)) // a is a point, b is a segment
        {
            if (PointOnLine(a1, b1, b2))
                return new PointF[] { a1 };
            else
                return new PointF[] { };
        }

        // at this point we know both a and b are actual segments

        float ua_t = (b2.X - b1.X) * (a1.Y - b1.Y) - (b2.Y - b1.Y) * (a1.X - b1.X);
        float ub_t = (a2.X - a1.X) * (a1.Y - b1.Y) - (a2.Y - a1.Y) * (a1.X - b1.X);
        float u_b = (b2.Y - b1.Y) * (a2.X - a1.X) - (b2.X - b1.X) * (a2.Y - a1.Y);

        // Infinite lines intersect somewhere
        if (!(-MyEpsilon < u_b && u_b < MyEpsilon))   // e.g. u_b != 0.0
        {
            float ua = ua_t / u_b;
            float ub = ub_t / u_b;
            if (0.0f <= ua && ua <= 1.0f && 0.0f <= ub && ub <= 1.0f)
            {
                // Intersection
                return new PointF[] {
                    new PointF(a1.X + ua * (a2.X - a1.X),
                        a1.Y + ua * (a2.Y - a1.Y)) };
            }
            else
            {
                // No Intersection
                return new PointF[] { };
            }
        }
        else // lines (not just segments) are parallel or the same line
        {
            // Coincident
            // find the common overlapping section of the lines
            // first find the distance (squared) from one point (a1) to each point
            if ((-MyEpsilon < ua_t && ua_t < MyEpsilon)
               || (-MyEpsilon < ub_t && ub_t < MyEpsilon))
            {
                if (a1.Equals(a2)) // danger!
                    return OneD_Intersection(b1, b2, a1, a2);
                else // safe
                    return OneD_Intersection(a1, a2, b1, b2);
            }
            else
            {
                // Parallel
                return new PointF[] { };
            }
        }
    }


}

这是测试代码:

    public class IntersectTest
    {
        public static void PrintPoints(PointF[] pf)
        {
            if (pf == null || pf.Length < 1)
                System.Console.WriteLine("Doesn't intersect");
            else if (pf.Length == 1)
            {
                System.Console.WriteLine(pf[0]);
            }
            else if (pf.Length == 2)
            {
                System.Console.WriteLine(pf[0] + " -- " + pf[1]);
            }
        }

        public static void TestIntersect(PointF a1, PointF a2, PointF b1, PointF b2)
        {
            System.Console.WriteLine("----------------------------------------------------------");
            System.Console.WriteLine("Does      " + a1 + " -- " + a2);
            System.Console.WriteLine("intersect " + b1 + " -- " + b2 + " and if so, where?");
            System.Console.WriteLine("");
            PointF[] result = Intersect.Intersection(a1, a2, b1, b2);
            PrintPoints(result);
        }

        public static void Main()
        {
            System.Console.WriteLine("----------------------------------------------------------");
            System.Console.WriteLine("line segments intersect");
            TestIntersect(new PointF(0, 0),
                          new PointF(100, 100),
                          new PointF(100, 0),
                          new PointF(0, 100));
            TestIntersect(new PointF(5, 17),
                          new PointF(100, 100),
                          new PointF(100, 29),
                          new PointF(8, 100));
            System.Console.WriteLine("----------------------------------------------------------");
            System.Console.WriteLine("");

            System.Console.WriteLine("----------------------------------------------------------");
            System.Console.WriteLine("just touching points and lines cross");
            TestIntersect(new PointF(0, 0),
                          new PointF(25, 25),
                          new PointF(25, 25),
                          new PointF(100, 75));
            System.Console.WriteLine("----------------------------------------------------------");
            System.Console.WriteLine("");

            System.Console.WriteLine("----------------------------------------------------------");
            System.Console.WriteLine("parallel");
            TestIntersect(new PointF(0, 0),
                          new PointF(0, 100),
                          new PointF(100, 0),
                          new PointF(100, 100));
            System.Console.WriteLine("----------------------------------------------------------");
            System.Console.WriteLine("");

            System.Console.WriteLine("----");
            System.Console.WriteLine("lines cross but segments don't intersect");
            TestIntersect(new PointF(50, 50),
                          new PointF(100, 100),
                          new PointF(0, 25),
                          new PointF(25, 0));
            System.Console.WriteLine("----------------------------------------------------------");
            System.Console.WriteLine("");

            System.Console.WriteLine("----------------------------------------------------------");
            System.Console.WriteLine("coincident but do not overlap!");
            TestIntersect(new PointF(0, 0),
                          new PointF(25, 25),
                          new PointF(75, 75),
                          new PointF(100, 100));
            System.Console.WriteLine("----------------------------------------------------------");
            System.Console.WriteLine("");

            System.Console.WriteLine("----------------------------------------------------------");
            System.Console.WriteLine("touching points and coincident!");
            TestIntersect(new PointF(0, 0),
                          new PointF(25, 25),
                          new PointF(25, 25),
                          new PointF(100, 100));
            System.Console.WriteLine("----------------------------------------------------------");
            System.Console.WriteLine("");

            System.Console.WriteLine("----------------------------------------------------------");
            System.Console.WriteLine("overlap/coincident");
            TestIntersect(new PointF(0, 0),
                          new PointF(75, 75),
                          new PointF(25, 25),
                          new PointF(100, 100));
            TestIntersect(new PointF(0, 0),
                          new PointF(100, 100),
                          new PointF(0, 0),
                          new PointF(100, 100));
            System.Console.WriteLine("----------------------------------------------------------");
            System.Console.WriteLine("");

            while (!System.Console.KeyAvailable) { }
        }

    }

这是输出:

----------------------------------------------------------
line segments intersect
----------------------------------------------------------
Does      {X=0, Y=0} -- {X=100, Y=100}
intersect {X=100, Y=0} -- {X=0, Y=100} and if so, where?

{X=50, Y=50}
----------------------------------------------------------
Does      {X=5, Y=17} -- {X=100, Y=100}
intersect {X=100, Y=29} -- {X=8, Y=100} and if so, where?

{X=56.85001, Y=62.30054}
----------------------------------------------------------

----------------------------------------------------------
just touching points and lines cross
----------------------------------------------------------
Does      {X=0, Y=0} -- {X=25, Y=25}
intersect {X=25, Y=25} -- {X=100, Y=75} and if so, where?

{X=25, Y=25}
----------------------------------------------------------

----------------------------------------------------------
parallel
----------------------------------------------------------
Does      {X=0, Y=0} -- {X=0, Y=100}
intersect {X=100, Y=0} -- {X=100, Y=100} and if so, where?

Doesn't intersect
----------------------------------------------------------

----
lines cross but segments don't intersect
----------------------------------------------------------
Does      {X=50, Y=50} -- {X=100, Y=100}
intersect {X=0, Y=25} -- {X=25, Y=0} and if so, where?

Doesn't intersect
----------------------------------------------------------

----------------------------------------------------------
coincident but do not overlap!
----------------------------------------------------------
Does      {X=0, Y=0} -- {X=25, Y=25}
intersect {X=75, Y=75} -- {X=100, Y=100} and if so, where?

Doesn't intersect
----------------------------------------------------------

----------------------------------------------------------
touching points and coincident!
----------------------------------------------------------
Does      {X=0, Y=0} -- {X=25, Y=25}
intersect {X=25, Y=25} -- {X=100, Y=100} and if so, where?

{X=25, Y=25}
----------------------------------------------------------

----------------------------------------------------------
overlap/coincident
----------------------------------------------------------
Does      {X=0, Y=0} -- {X=75, Y=75}
intersect {X=25, Y=25} -- {X=100, Y=100} and if so, where?

{X=25, Y=25} -- {X=75, Y=75}
----------------------------------------------------------
Does      {X=0, Y=0} -- {X=100, Y=100}
intersect {X=0, Y=0} -- {X=100, Y=100} and if so, where?

{X=0, Y=0} -- {X=100, Y=100}
----------------------------------------------------------

答案 1 :(得分:7)

听起来你有自己的解决方案,这很棒。我有一些改进它的建议。

该方法存在一个主要的可用性问题,因为它很难理解(1)参数的含义,以及(2)结果的意义。如果你想使用这种方法,你必须弄清楚这两个小难题。

我更倾向于使用类型系统来更清楚地说明这种方法的作用。

我首先定义一个类型 - 也许是一个结构,特别是如果它将是不可变的 - 称为LineSegment。 LineSegment包含两个表示结束点的PointF结构。

其次,我将定义一个抽象基类型“Locus”,并派生类型EmptyLocus,PointLocus,LineSegmentLocus以及可能的UnionLocus,如果您需要表示两个或多个基因座的并集的基因座。空基因座只是一个单一的,一个点基因座只是一个单点,依此类推。

现在您的方法签名变得更加清晰:

static Locus Intersect(LineSegment l1, LineSegment l2)

此方法采用两个线段并计算作为其交点的点的轨迹 - 空白,单个点或线段。

请注意,您可以概括此方法。计算线段与线段的交集是很棘手的,但是计算线段与点或具有点的点或具有空轨迹的任何事物的交点是 easy 。并且将交叉点扩展到任意的基因座联合并不困难。因此,您实际上可以写:

static Locus Intersect(Locus l1, Locus l2)

嘿,现在很明显,Intersect可能是基因座的扩展方法:

static Locus Intersect(this Locus l1, Locus l2)

添加从PointF到PointLocus和LineSegment到LineSegmentLocus的隐式转换,您可以说

之类的内容
var point = new PointF(whatever);
var lineseg = new LineSegment(somepoint, someotherpoint);
var intersection = lineseg.Intersect(point);
if (intersection is EmptyLocus) ...

很好地使用类型系统可以大大提高程序的可读性。

答案 2 :(得分:2)

@Jared,很棒的问题和很棒的答案。

如Joseph O'Rourke的CGA常见问题here所述,可以通过将一个点的位置表示为单个参数的函数来简化问题。

  

设r是表示P'的参数   沿着包含AB的线的位置,   具有以下含义:

      r=0      P = A
      r=1      P = B
      r<0      P is on the backward extension of AB
      r>1      P is on the forward extension of AB
      0<r<1    P is interior to AB

按照这些思路,对于任何点C(cx,cy),我们按如下方式计算r:

double deltax = bx - ax;
double deltay = by - ay;
double l2 = deltax * deltax + deltay * deltay;
double r = (ay - cy) * (ay - by) - (ax - cx) * (bx - ax) / l2;

这样可以更容易地计算重叠段。

请注意,我们避免使用平方根,因为只需要长度的平方。

答案 3 :(得分:-3)

这真的很简单。如果你有两条线,你可以找到y = mx + b形式的两个方程。例如:

y = 2x + 5
y = x - 3

因此,当y1 = y2在同一个x坐标时,两条线相交,所以......

2x + 5 = x - 3 
x + 5 = -3
x = -8

当x = -8 y1 = y2并且您找到了交点。翻译成代码应该是非常简单的。如果没有交点,则每条线的斜率 m 将相等,在这种情况下,您甚至不需要执行计算。