对于二叉树,我们定义水平距离如下:
Horizontal distance(hd) of root = 0
If you go left then hd = hd(of its parent)-1, and
if you go right then hd = hd(of its parent)+1.
树的底视图然后由树的所有节点组成,其中没有具有相同hd
和更高级别的节点。 (对于给定的hd
值,可能有多个这样的节点。在这种情况下,它们都属于底视图。)我正在寻找输出树的底部视图的算法。 / p>
示例:
假设二叉树是:
1
/ \
2 3
/ \ / \
4 5 6 7
\
8
树的底部视图是:4 2 5 6 8 7
Ok so for the first example,
Horizontal distance of node with value 1: 0, level = 1
Horizontal distance of node with value 2: 0 - 1 = -1, level = 2
Horizontal distance of node with value 3: 0 + 1 = 1, level = 2
Horizontal distance of node with value 4: -1 - 1 = -2, level = 3
Horizontal distance of node with value 5: -1 + 1 = 0, level = 3
Horizontal distance of node with value 6: 1 - 1 = 0, level = 3
Horizontal distance of node with value 7: 1 + 1 = 2, level = 3
Horizontal distance of node with value 8: 0 + 1 = 1, level = 4
So for each vertical line that is for hd=0, print those nodes which appear in the last level of that line.
So for hd = -2, print 4
for hd = -1, print 2
for hd = 0, print 5 and 6 because they both appear in the last level of that vertical line
for hd = 1, print 8
for hd = 2, print 7
另一个参考示例:
1
/ \
2 3
/ \ / \
4 5 6 7
/ \ / \ / \ / \
8 9 10 11 12 13 14 15
所以这个输出将是: 8 4 9 10 12 5 6 11 13 14 7 15
Similarly for this example
hd of node with value 1: 0, , level = 1
hd of node with value 2: -1, level = 2
hd of node with value 3: 1, level = 2
hd of node with value 4: -2, level = 3
hd of node with value 5: 0, , level = 3
hd of node with value 6: 0, level = 3
hd of node with value 7: 2, level = 3
hd of node with value 8: -3, level = 4
hd of node with value 9: -1, level = 4
hd of node with value 10: -1, level = 4
hd of node with value 11: 1, level = 4
hd of node with value 12: -1, level = 4
hd of node with value 13: 1, level = 4
hd of node with value 14: 1, level = 4
hd of node with value 15: 3, level = 4
So, the output will be:
hd = -3, print 8
hd = -2, print 4
hd = -1, print 9 10 12
hd = 0, print 5 6
hd = 1, print 11 13 14
hd = 2, print 7
hd = 3, print 15
So the ouput will be:
8 4 9 10 12 5 6 11 13 14 7 15
我已经知道了一种方法,我可以使用大量的额外空间(一个地图和一个用于存储该垂直线中最后一个元素的水平的一维数组)并且时间复杂度为$ O的方法(N \ log N)$。 这是这种方法的实现:
#include <iostream>
#include <cstdio>
#include <map>
#include <vector>
using namespace std;
struct Node{
int data;
struct Node *left, *right;
};
Node* newNode(int data)
{
Node *temp = new Node;
temp->data = data;
temp->left = temp->right = NULL;
return temp;
}
int height(Node *node)
{
if(node == NULL)
return 0;
else{
int lh = height(node->left);
int rh = height(node->right);
if(lh > rh)
return (lh+1);
else
return (rh+1);
}
}
void printBottom(Node *node, int level, int hd, int min, map< int, vector<int> >& visited, int lev[], int l)
{
if(node == NULL)
return;
if(level == 1){
if(lev[hd-min] == 0 || lev[hd-min] == l){
lev[hd-min] = l;
visited[hd-min].push_back(node->data);
}
}
else if(level > 1)
{
printBottom(node->left, level-1, hd-1, min, visited, lev, l);
printBottom(node->right, level-1, hd+1, min, visited, lev, l);
}
}
void findMinMax(Node *node, int *min, int *max, int hd)
{
if(node == NULL)
return;
if(hd < *min)
*min = hd;
else if(hd > *max)
*max = hd;
findMinMax(node->left, min, max, hd-1);
findMinMax(node->right, min, max, hd+1);
}
int main()
{
Node *root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right->left = newNode(6);
root->right->right = newNode(7);
root->left->left->left = newNode(8);
root->left->left->right = newNode(9);
root->left->right->left = newNode(10);
root->left->right->right = newNode(11);
root->right->left->left = newNode(12);
root->right->left->right = newNode(13);
root->right->right->left = newNode(14);
root->right->right->right = newNode(15);
int min = 0, max = 0;
findMinMax(root, &min, &max, 0);
int lev[max-min+1];
map < int, vector<int> > visited;
map< int,vector<int> > :: iterator it;
for(int i = 0; i < max-min+1; i++)
lev[i] = 0;
int h = height(root);
for (int i=h; i>0; i--){
printBottom(root, i, 0, min, visited, lev, i);
}
for(it = visited.begin() ; it != visited.end() ; it++) {
for(int i=0 ; i < it->second.size() ; i++) {
cout << it->second[i] << " ";
}
}
return 0;
}
我正在寻求帮助,以更优化的方式做到这一点,使用更少的空间或时间。这个问题还有其他有效的方法吗?
答案 0 :(得分:0)
首先,您可以将时间复杂度降低到O(n),同时保持相同的空间复杂度。您可以通过在visited
:
printBottom
来完成此操作
void printBottom(Node *node, int level, int hd, int min, map< int, vector<int> >& visited, int lev[])
{
if(node == NULL)
return;
if(lev[hd-min] < level){
lev[hd-min] = level;
visited[hd-min] = new vector<int>; //erase old values, they are hidden by the current node
}
if(lev[hd-min] <= level){
visited[hd-min].push_back(node->data);
}
printBottom(node->left, level+1, hd-1, min, visited, lev);
printBottom(node->right, level+1, hd+1, min, visited, lev);
}
初次调用printBottom(root, 1, 0, min, visited, lev);
如果你按照hd
值增加的顺序坚持节点beig输出,我不认为你可以改善空间消耗。但是,如果您允许不同的输出顺序,则可以先删除visited
,首先确定&#39; hd&#39;的每个值,应输出哪个级别,然后再打印,打印匹配的值:
void fillLev(Node *node, int level, int hd, int min, int lev[])
{
if(node == NULL)
return;
if(lev[hd-min] < level){
lev[hd-min] = level;
}
fillLev(node->left, level+1, hd-1, min, lev);
fillLev(node->right, level+1, hd+1, min, lev);
}
void printBottom(Node *node, int level, int hd, int min, int lev[])
{
if(node == NULL)
return;
if(lev[hd-min] == level){
cout << node->data;
}
printBottom(node->left, level+1, hd-1, min, lev);
printBottom(node->right, level+1, hd+1, min, lev);
}
通过电话fillLev(root, 1, 0, min, lev);
和printBottom(root, 1, 0, min, lev);
。
答案 1 :(得分:0)
void bottomView(node *root)
{
if(!root)
return ;
bottomView(root->left);
if(!root->left || !root->right)
cout<<"\t"<<root->data;
if ((root->right && !root->right->left) && (root->left &&!root->left->right))
cout<<"\t"<<root->data;
bottomView(root->right);
}
答案 2 :(得分:0)
java中的解决方案如下,
Intiall call is,
boolean obstructionFromLeftSide = printBottomViewOrderOfTree(root.left, true);
boolean obstructionFromRightSide = printBottomViewOrderOfTree(root.right, false);
if (!(obstructionFromLeftSide || obstructionFromRightSide))
out.println(root.data + " ");
和函数在这里给出,
boolean printBottomViewOrderOfTree(Node root, boolean fromLeftSide)
{
if (root == null)
return false;
boolean obstructionFromLeftSide = printBottomViewOrderOfTree(root.left, true);
boolean obstructionFromRightSide = printBottomViewOrderOfTree(root.right, false);
if (!(obstructionFromLeftSide || obstructionFromRightSide))
out.println(root.data + " ");
if (fromLeftSide)
{
return root.right != null;
}
else
{
return root.left != null;
}
}
答案 3 :(得分:0)
您是否考虑过根据水平距离和水平使用HashMap? 在C ++中,我们可以像这样使用HashMap:
map<int,map<int,vector<int>>> HM;
// Let Horizontal Distance = HD,Level = L
// HM[HD][L] -> Vector tracking every node for a given HD,L
这种方法有Time = O(n),并且在删除笨拙的fillLev()函数方面比你的代码有所改进。我们在这里所做的只是单树遍历和单个hashmap遍历。这是代码:
void getBottomView(struct node *tree,int HD,int L,map<int,map<int,vector<int>>> &HM)
{
if(tree==NULL)
return;
HM[HD][L].push_back(tree->data);
getBottomView(tree->left,HD-1,L+1,HM);
getBottomView(tree->right,HD+1,L+1,HM);
}
void printBottomViewbyMap(map<int,map<int,vector<int>>> &HM)
{
map<int,map<int,vector<int>>>::iterator i;
for(i=HM.begin() ; i!=HM.end() ; i++)
{
if(i->second.size()==1)
{
map<int,vector<int>>::iterator mapi;
mapi = i->second.begin();
for(int j=0 ; j<= mapi->second.size()-1 ; j++)
cout<<mapi->second[j]<<" ";
}
else
{
map<int,vector<int>>::reverse_iterator mapi;
mapi = i->second.rbegin();
for(int j=0 ; j<= mapi->second.size()-1 ; j++)
cout<<mapi->second[j]<<" ";
}
}
}
void printBottomView(struct node *tree)
{
map<int,map<int,vector<int>>> HM;
getBottomView(tree,0,0,HM);
printBottomViewbyMap(HM);
}
答案 4 :(得分:0)
如果仔细观察算法,则只能逐步到达较高水平的节点。如果我们有一个数组(我们因为负水平距离而无法做到),我们只需要做一个[horizontalDistance] =节点。
然后遍历此数组以打印底部视图。
这样可以工作,因为数组会存储特定水平距离的最底层元素,因为我们正在进行水平顺序遍历。
现在解决负面索引问题,创建一个名为BiDirectionalList的类。在java中,您可以使用两个ArrayLists,或者在C ++中,您可以使用两个std :: vectors。
但是这里是您需要编码的BiDirectionalList:
public class BiDirectionalList<T> {
List<T> forward;
List<T> reverse;
public BiDirectionalList() {
forward = new ArrayList<>();
reverse = new ArrayList<>();
reverse.add(null); //0 index of reverse list will never be used
}
public int size() {
return forward.size() + reverse.size()-1;
}
public boolean isEmpty() {
if (forward.isEmpty() && reverse.size() == 1) return true;
return false;
}
public T get(int index) {
if (index < 0) {
reverse.get(-index);
}
return forward.get(index);
}
/**
* Sets an element at given index only if the index <= size.
* i.e. either overwrites an existing element or increases the size by 1
* @param index
* @param element
*/
public void set(int index, T element) {
if (index < 0) {
index = -index;
if (index > reverse.size()) throw new IllegalArgumentException("Index can at max be equal to size");
else if (reverse.size() == index ) reverse.add(index, element);
else reverse.set(index, element);
} else {
if (index > forward.size()) throw new IllegalArgumentException("Index can at max be equal to size");
else if (forward.size() == index ) forward.add(index, element);
else forward.set(index, element);
}
}
}
答案 5 :(得分:0)
这里我们必须记录树的水平和与根节点的水平距离。
void printBottom(Node *root,int dif,int level,map<int, pair<int,int> > &map){
if(root==NULL)return;
if(map.find(dif)==map.end() || level>= map[dif].second){
map[dif] = {root->data,level};
}
printBottom(root->left,dif-1,level+1,map);
printBottom(root->right,dif+1,level+1,map);
}
void bottomView(Node *root){
map<int ,pair<int,int> > map;
printBottom(root,0,0,map);
for(auto it : map){
printf("%d ",it.second.first);
}
}
答案 6 :(得分:0)
c#实现:
public class node
{
public int data;
public node left, right;
public int hd;
}
static node newNode(int item)
{
node temp = new node();
temp.data = item;
temp.left = null;
temp.right = null;
return temp;
}
static void rightViewOfBT(node root)
{
Queue<node> queue = new Queue<node>();
SortedDictionary<int, int> treeMap = new SortedDictionary<int, int>();
int hd = 0;
root.hd = hd;
queue.Enqueue(root);
while(queue.Count > 0)
{
node temp = queue.Peek();
queue.Dequeue();
if (treeMap.ContainsKey(temp.hd))
{
treeMap[temp.hd] = temp.data;
}
else
{
treeMap.Add(temp.hd, temp.data);
}
if (temp.left != null)
{
temp.left.hd = temp.hd - 1;
queue.Enqueue(temp.left);
}
if (temp.right != null)
{
temp.right.hd = temp.hd + 1;
queue.Enqueue(temp.right);
}
}
foreach (var tree in treeMap)
Console.Write(tree.Value);
}
static void Main(string[] args)
{
node root = newNode(1);
root.left = newNode(2);
root.right = newNode(3);
root.left.left = newNode(4);
root.left.right = newNode(5);
root.left.left.right = newNode(8);
root.left.right.left = newNode(9);
root.right.left = newNode(6);
root.right.right = newNode(7);
root.right.right.right = newNode(11);
root.right.left.right = newNode(10);
rightViewOfBT(root);
}