我想运行一堆异步任务,并限制在任何给定时间可以完成的任务数量。
假设您有1000个网址,并且您只希望一次打开50个请求;但只要一个请求完成,您就会打开与列表中下一个URL的连接。这样,一直有50个连接打开,直到URL列表用完为止。
如果可能的话,我也想利用给定数量的线程。
我提出了一种扩展方法,ThrottleTasksAsync
可以满足我的需求。那里有更简单的解决方案吗?我认为这是一种常见的情况。
用法:
class Program
{
static void Main(string[] args)
{
Enumerable.Range(1, 10).ThrottleTasksAsync(5, 2, async i => { Console.WriteLine(i); return i; }).Wait();
Console.WriteLine("Press a key to exit...");
Console.ReadKey(true);
}
}
以下是代码:
static class IEnumerableExtensions
{
public static async Task<Result_T[]> ThrottleTasksAsync<Enumerable_T, Result_T>(this IEnumerable<Enumerable_T> enumerable, int maxConcurrentTasks, int maxDegreeOfParallelism, Func<Enumerable_T, Task<Result_T>> taskToRun)
{
var blockingQueue = new BlockingCollection<Enumerable_T>(new ConcurrentBag<Enumerable_T>());
var semaphore = new SemaphoreSlim(maxConcurrentTasks);
// Run the throttler on a separate thread.
var t = Task.Run(() =>
{
foreach (var item in enumerable)
{
// Wait for the semaphore
semaphore.Wait();
blockingQueue.Add(item);
}
blockingQueue.CompleteAdding();
});
var taskList = new List<Task<Result_T>>();
Parallel.ForEach(IterateUntilTrue(() => blockingQueue.IsCompleted), new ParallelOptions { MaxDegreeOfParallelism = maxDegreeOfParallelism },
_ =>
{
Enumerable_T item;
if (blockingQueue.TryTake(out item, 100))
{
taskList.Add(
// Run the task
taskToRun(item)
.ContinueWith(tsk =>
{
// For effect
Thread.Sleep(2000);
// Release the semaphore
semaphore.Release();
return tsk.Result;
}
)
);
}
});
// Await all the tasks.
return await Task.WhenAll(taskList);
}
static IEnumerable<bool> IterateUntilTrue(Func<bool> condition)
{
while (!condition()) yield return true;
}
}
该方法使用BlockingCollection
和SemaphoreSlim
来使其正常工作。限制器在一个线程上运行,所有异步任务在另一个线程上运行。为了实现并行性,我添加了一个maxDegreeOfParallelism参数,该参数传递给Parallel.ForEach
循环,重新用作while
循环。
旧版本是:
foreach (var master = ...)
{
var details = ...;
Parallel.ForEach(details, detail => {
// Process each detail record here
}, new ParallelOptions { MaxDegreeOfParallelism = 15 });
// Perform the final batch updates here
}
但是,线程池快速耗尽,您无法async
/ await
。
加成:
要解决BlockingCollection
中Take()
调用CompleteAdding()
时出现异常的问题,我会使用TryTake
重载超时。如果我没有在TryTake
中使用超时,则会因BlockingCollection
阻止TryTake
而无法使用TakeAsync
。有没有更好的办法?理想情况下,会有{{1}}方法。
答案 0 :(得分:51)
根据建议,使用TPL Dataflow。
您可能正在寻找TransformBlock<TInput, TOutput>
。
您可以定义MaxDegreeOfParallelism
来限制可以转换的字符串数量(即,可以下载多少个网址)。然后您将网址发布到该区块,当您完成后,您告诉阻止您已完成添加项目并获取响应。
var downloader = new TransformBlock<string, HttpResponse>(
url => Download(url),
new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism = 50 }
);
var buffer = new BufferBlock<HttpResponse>();
downloader.LinkTo(buffer);
foreach(var url in urls)
downloader.Post(url);
//or await downloader.SendAsync(url);
downloader.Complete();
await downloader.Completion;
IList<HttpResponse> responses;
if (buffer.TryReceiveAll(out responses))
{
//process responses
}
注意:TransformBlock
缓冲其输入和输出。那么,为什么我们需要将其链接到BufferBlock
?
因为TransformBlock
在完成所有项目(HttpResponse
)之后才会完成,await downloader.Completion
会挂起。相反,我们让downloader
将其所有输出转发到专用缓冲区块 - 然后我们等待downloader
完成,并检查缓冲区块。
答案 1 :(得分:42)
假设您有1000个网址,并且您只想打开50个请求 一个时间;但是只要一个请求完成,就会打开一个连接 到列表中的下一个URL。这样,总有50个 连接一次打开,直到URL列表用尽。
以下简单解决方案已在SO上多次浮出水面。它没有使用阻塞代码,也没有明确地创建线程,因此它可以很好地扩展:
const int MAX_DOWNLOADS = 50;
static async Task DownloadAsync(string[] urls)
{
using (var semaphore = new SemaphoreSlim(MAX_DOWNLOADS))
using (var httpClient = new HttpClient())
{
var tasks = urls.Select(async url =>
{
await semaphore.WaitAsync();
try
{
var data = await httpClient.GetStringAsync(url);
Console.WriteLine(data);
}
finally
{
semaphore.Release();
}
});
await Task.WhenAll(tasks);
}
}
问题是,下载数据的处理应该在不同的管道上完成,具有不同的级别的并行性,尤其是如果它是一个CPU限制处理。
例如,您可能希望有4个线程同时进行数据处理(CPU核心数),以及多达50个待处理请求以获取更多数据(根本不使用线程)。 AFAICT,这不是您的代码目前所做的。 TPL Dataflow或Rx可以作为首选解决方案派上用场。然而,使用简单的TPL实现类似的东西当然是可能的。注意,这里唯一的阻塞代码是在Task.Run
内进行实际数据处理的代码:
const int MAX_DOWNLOADS = 50;
const int MAX_PROCESSORS = 4;
// process data
class Processing
{
SemaphoreSlim _semaphore = new SemaphoreSlim(MAX_PROCESSORS);
HashSet<Task> _pending = new HashSet<Task>();
object _lock = new Object();
async Task ProcessAsync(string data)
{
await _semaphore.WaitAsync();
try
{
await Task.Run(() =>
{
// simuate work
Thread.Sleep(1000);
Console.WriteLine(data);
});
}
finally
{
_semaphore.Release();
}
}
public async void QueueItemAsync(string data)
{
var task = ProcessAsync(data);
lock (_lock)
_pending.Add(task);
try
{
await task;
}
catch
{
if (!task.IsCanceled && !task.IsFaulted)
throw; // not the task's exception, rethrow
// don't remove faulted/cancelled tasks from the list
return;
}
// remove successfully completed tasks from the list
lock (_lock)
_pending.Remove(task);
}
public async Task WaitForCompleteAsync()
{
Task[] tasks;
lock (_lock)
tasks = _pending.ToArray();
await Task.WhenAll(tasks);
}
}
// download data
static async Task DownloadAsync(string[] urls)
{
var processing = new Processing();
using (var semaphore = new SemaphoreSlim(MAX_DOWNLOADS))
using (var httpClient = new HttpClient())
{
var tasks = urls.Select(async (url) =>
{
await semaphore.WaitAsync();
try
{
var data = await httpClient.GetStringAsync(url);
// put the result on the processing pipeline
processing.QueueItemAsync(data);
}
finally
{
semaphore.Release();
}
});
await Task.WhenAll(tasks.ToArray());
await processing.WaitForCompleteAsync();
}
}
答案 2 :(得分:3)
根据要求,这里是我最终使用的代码。
工作在主 - 详细配置中设置,每个主服务器作为批处理进行处理。每个工作单元都以这种方式排队:
var success = true;
// Start processing all the master records.
Master master;
while (null != (master = await StoredProcedures.ClaimRecordsAsync(...)))
{
await masterBuffer.SendAsync(master);
}
// Finished sending master records
masterBuffer.Complete();
// Now, wait for all the batches to complete.
await batchAction.Completion;
return success;
一次缓冲一个主人,以节省其他外部流程的工作。通过masterTransform
TransformManyBlock
调度每个母版的详细信息。还会创建BatchedJoinBlock
以一次性收集详细信息。
实际工作在detailTransform
TransformBlock
中完成,异步,一次150个。 BoundedCapacity
设置为300,以确保太多的Masters不会在链的开头进行缓冲,同时还留出足够的详细记录空间排队,以便一次处理150条记录。该块会向其目标输出object
,因为它会在链接中进行过滤,具体取决于它是Detail
还是Exception
。
batchAction
ActionBlock
收集所有批次的输出,并为每批次执行批量数据库更新,错误记录等。
将有几个BatchedJoinBlock
,每个主人一个。由于每个ISourceBlock
按顺序输出,并且每个批次仅接受与一个主数据关联的详细记录数,因此将按顺序处理批次。每个块仅输出一个组,并在完成时取消链接。只有最后一个批处理块将其完成传播到最终ActionBlock
。
数据流网络:
// The dataflow network
BufferBlock<Master> masterBuffer = null;
TransformManyBlock<Master, Detail> masterTransform = null;
TransformBlock<Detail, object> detailTransform = null;
ActionBlock<Tuple<IList<object>, IList<object>>> batchAction = null;
// Buffer master records to enable efficient throttling.
masterBuffer = new BufferBlock<Master>(new DataflowBlockOptions { BoundedCapacity = 1 });
// Sequentially transform master records into a stream of detail records.
masterTransform = new TransformManyBlock<Master, Detail>(async masterRecord =>
{
var records = await StoredProcedures.GetObjectsAsync(masterRecord);
// Filter the master records based on some criteria here
var filteredRecords = records;
// Only propagate completion to the last batch
var propagateCompletion = masterBuffer.Completion.IsCompleted && masterTransform.InputCount == 0;
// Create a batch join block to encapsulate the results of the master record.
var batchjoinblock = new BatchedJoinBlock<object, object>(records.Count(), new GroupingDataflowBlockOptions { MaxNumberOfGroups = 1 });
// Add the batch block to the detail transform pipeline's link queue, and link the batch block to the the batch action block.
var detailLink1 = detailTransform.LinkTo(batchjoinblock.Target1, detailResult => detailResult is Detail);
var detailLink2 = detailTransform.LinkTo(batchjoinblock.Target2, detailResult => detailResult is Exception);
var batchLink = batchjoinblock.LinkTo(batchAction, new DataflowLinkOptions { PropagateCompletion = propagateCompletion });
// Unlink batchjoinblock upon completion.
// (the returned task does not need to be awaited, despite the warning.)
batchjoinblock.Completion.ContinueWith(task =>
{
detailLink1.Dispose();
detailLink2.Dispose();
batchLink.Dispose();
});
return filteredRecords;
}, new ExecutionDataflowBlockOptions { BoundedCapacity = 1 });
// Process each detail record asynchronously, 150 at a time.
detailTransform = new TransformBlock<Detail, object>(async detail => {
try
{
// Perform the action for each detail here asynchronously
await DoSomethingAsync();
return detail;
}
catch (Exception e)
{
success = false;
return e;
}
}, new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism = 150, BoundedCapacity = 300 });
// Perform the proper action for each batch
batchAction = new ActionBlock<Tuple<IList<object>, IList<object>>>(async batch =>
{
var details = batch.Item1.Cast<Detail>();
var errors = batch.Item2.Cast<Exception>();
// Do something with the batch here
}, new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism = 4 });
masterBuffer.LinkTo(masterTransform, new DataflowLinkOptions { PropagateCompletion = true });
masterTransform.LinkTo(detailTransform, new DataflowLinkOptions { PropagateCompletion = true });