绘制均值和标准差

时间:2014-03-18 14:07:39

标签: python matplotlib plot

我在不同的x点有几个函数值。我想在python中绘制mean和std,就像this SO question的答案一样。我知道使用matplotlib这一定很容易,但我不知道函数的名称可以做到这一点。有谁知道吗?

enter image description here

2 个答案:

答案 0 :(得分:57)

plt.errorbar可用于绘制x,y,错误数据(与通常的plt.plot相反)

import matplotlib.pyplot as plt
import numpy as np

x = np.array([1, 2, 3, 4, 5])
y = np.power(x, 2) # Effectively y = x**2
e = np.array([1.5, 2.6, 3.7, 4.6, 5.5])

plt.errorbar(x, y, e, linestyle='None', marker='^')

plt.show()

plt.errorbar接受与plt.plot相同的参数,其他yerrxerr默认为无(例如,如果您将其留空,则其将作为{{1} })。

Example plot

答案 1 :(得分:8)

您可以通过此示例找到答案:errorbar_demo_features.py

"""
Demo of errorbar function with different ways of specifying error bars.

Errors can be specified as a constant value (as shown in `errorbar_demo.py`),
or as demonstrated in this example, they can be specified by an N x 1 or 2 x N,
where N is the number of data points.

N x 1:
    Error varies for each point, but the error values are symmetric (i.e. the
    lower and upper values are equal).

2 x N:
    Error varies for each point, and the lower and upper limits (in that order)
    are different (asymmetric case)

In addition, this example demonstrates how to use log scale with errorbar.
"""
import numpy as np
import matplotlib.pyplot as plt

# example data
x = np.arange(0.1, 4, 0.5)
y = np.exp(-x)
# example error bar values that vary with x-position
error = 0.1 + 0.2 * x
# error bar values w/ different -/+ errors
lower_error = 0.4 * error
upper_error = error
asymmetric_error = [lower_error, upper_error]

fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True)
ax0.errorbar(x, y, yerr=error, fmt='-o')
ax0.set_title('variable, symmetric error')

ax1.errorbar(x, y, xerr=asymmetric_error, fmt='o')
ax1.set_title('variable, asymmetric error')
ax1.set_yscale('log')
plt.show()

其中包括:

enter image description here