我有一个来自Image(PIL / Pillow)对象的numpy 3D数组。
[[178 214 235]
[180 215 236]
[180 215 235]
...,
[146 173 194]
[145 172 193]
[146 173 194]]
...,
[[126 171 203]
[125 169 203]
[128 171 205]
...,
[157 171 182]
[144 167 182]
[131 160 180]]]
图片大小约为500x500像素。我需要为每个像素应用两个函数。
[157, 171, 182]
这样的1D数组,并返回带有LAB颜色的1D数组,例如[53.798345635, -10.358443685, 100.358443685]
。scipy.spatial.cKDTree
从自定义调色板中查找最近的颜色。自定义调色板为kd-tree。
palette = [[0,0,0], [127,127,127], [255,255,255]] # or [[0.,0.,0.], [50.,0.,0.], [100.,0.,0.]] for LAB color
tree = scipy.spatial.cKDTree(palette)
def find nearest(pixel):
distance, result = tree.query(pixel)
new_pixel = palette[result]
return new_pixel
有没有比使用Python迭代更快的解决方案? E.g。
for row in array:
for pixel in row:
apply_fuction1(pixel) # where pixel is one dimensional array like [157 171 182]
apply_fuction2(pixel)
UPD1 我不知道我做错了什么,但是:
python3 -mtimeit -s'import test' 'test.find_nearest()' # my variant with 2 loops and Image.putdata()
10 loops, best of 3: 3.35 sec per loop
python3 -mtimeit -s'import test' 'test.find_nearest_with_map()' # list comprehension with map and Image.fromarray() by traceur
10 loops, best of 3: 3.67 sec per loop
python3 -mtimeit -s'import test' 'test.along_axis()' # np.apply_along_axis() and Image.fromarray() by AdrienG
10 loops, best of 3: 5.25 sec per loop
def find_nearest(array=test_array):
new_image = []
for row in array:
for pixel in row:
distance, result = tree.query(pixel)
new_pixel = palette[result]
new_image.append(new_pixel)
im = Image.new('RGB', (300, 200))
im.putdata(new_image)
def _find_nearest(pixel):
distance, result = tree.query(pixel)
new_pixel = palette[result]
return new_pixel
def along_axis(array=test_array):
array = np.apply_along_axis(_find_nearest, 2, array)
im = Image.fromarray(np.uint8(array))
def find_nearest_with_map(array=test_array):
array = [list(map(_find_nearest, row)) for row in array]
im = Image.fromarray(np.uint8(array))
答案 0 :(得分:6)
对不起上一个回答,
a = np.arange(12).reshape((4,3))
def sum(array):
return np.sum(array)
np.apply_along_axis(sum, 1, a)
>>> array([ 3, 12, 21, 30])
答案 1 :(得分:1)
import numpy as np
# Example of an image. 2x2x3
a = np.array([ [ [1,2,3], [4,5,6] ],
[ [7,8,9], [10,11,12] ] ])
# Our function. This swap first and last items of 3-item array
def rgb_to_bgr (pixel):
pixel[0], pixel[2] = pixel[2], pixel[0]
return pixel
x,y,z = a.shape[0], a.shape[1], a.shape[2]
a = a.reshape(x*y,z)
a = np.apply_along_axis(rgb_to_bgr, 1, a)
a = a.reshape(x,y,z)
print(a)