我收到一个我不明白的Rstan错误,并且此特定错误在之前的Stack Overflow问题中未得到解决。
调用Rstan的R代码是
# Fit the model
start = Sys.time()
pvl_d_fit <- stan(file = 'pvl_d.stan', data = pvl_d_dat,
verbose = TRUE,
warmup = 1000, iter = 4000, thin = 3, chains = 3,
init = 'random', pars = c(
"A_ind", "mu_A", "la_A",
"w_ind", "mu_w", "la_w",
"a_ind", "mu_a", "la_a",
"c_ind", "mu_c", "la_c"))
end = Sys.time()
end - start
获得以下输出:
SAMPLING FOR MODEL 'pvl_d' NOW (CHAIN 1).
Informational Message: The current Metropolis proposal is about to be rejected becuase of the following issue:
Error in function stan::prob::normal_log(N4stan5agrad3varE): Random variable is -1.#IND:0, but must not be nan!
If this warning occurs sporadically, such as for highly constrained variable types like covariance matrices, then the sampler is fine,
but if this warning occurs often then your model may be either severely ill-conditioned or misspecified.
之前有人碰到过吗?
(注意:这条消息一遍又一遍地重复)。
Error in compileCode(f, code, language = language, verbose = verbose) :
Compilation ERROR, function(s)/method(s) not created! cygwin warning:
MS-DOS style path detected: C:/PROGRA~1/R/R-30~1.2/etc/x64/Makeconf
Preferred POSIX equivalent is: /cygdrive/c/PROGRA~1/R/R-30~1.2/etc/x64/Makeconf
CYGWIN environment variable option "nodosfilewarning" turns off this warning.
Consult the user's guide for more details about POSIX paths:
http://cygwin.com/cygwin-ug-net/using.html#using-pathnames
C:/Users/User/Documents/R/win-library/3.0/rstan/include//stansrc/stan/agrad/rev/var_stack.hpp:49:17: warning: 'void stan::agrad::free_memory()' defined but not used [-Wunused-function]
C:/Users/User/Documents/R/win-library/3.0/rstan/include//stansrc/stan/agrad/rev/chainable.hpp:87:17: warning: 'void stan::agrad::set_zero_all_adjoints()' defined but not used [-Wunused-function]
c:/rtools/gcc-4.6.3/bin/../lib/gcc/i686-w64-mingw32/4.6.3/../../../../i686-w64-mingw32/bin/as.exe: file9d8452242a.o: too many sections (39807)
C:\Users\User\AppData\Local\Temp\ccOl2E
In addition: Warning message:
running command 'C:/PROGRA~1/R/R-30~1.2/bin/x64/R CMD SHLIB file9d8452242a.cpp 2> file9d8452242a.cpp.err.txt' had status 1
stan文件是:
data {
int<lower=1> n_s; // # subjects
int<lower=1> n_t; // # trials
int<lower=0,upper=4> choice[n_s, n_t]; // # subj. x # trials matrix with choices
real<lower=-25,upper=2> net[n_s, n_t]; // Net amount of wins + losses
// (# subj. x # trials matrix)
}
parameters {
// Group-level mean parameters
real mu_A_pr;
real mu_w_pr;
real mu_a_pr;
real mu_c_pr;
// Group-level standard deviation
real<lower=0> sd_A;
real<lower=0> sd_w;
real<lower=0> sd_a;
real<lower=0> sd_c;
// Individual-level paramters
real A_ind_pr[n_s];
real w_ind_pr[n_s];
real a_ind_pr[n_s];
real c_ind_pr[n_s];
}
transformed parameters {
real<lower=0,upper=1> mu_A;
real<lower=0,upper=5> mu_w;
real<lower=0,upper=1> mu_a;
real<lower=0,upper=5> mu_c;
// Individual-level paramters
real<lower=0,upper=1> A_ind[n_s];
real<lower=0,upper=5> w_ind[n_s];
real<lower=0,upper=1> a_ind[n_s];
real<lower=0,upper=5> c_ind[n_s];
// Group-level precision parameters
real<lower=0> la_A;
real<lower=0> la_w;
real<lower=0> la_a;
real<lower=0> la_c;
mu_A <- Phi(mu_A_pr);
mu_w <- Phi(mu_w_pr) * 5;
mu_a <- Phi(mu_a_pr);
mu_c <- Phi(mu_c_pr) * 5;
for (s in 1:n_s)
{
A_ind[s] <- Phi(A_ind_pr[s]);
w_ind[s] <- Phi(w_ind_pr[s]) * 5;
a_ind[s] <- Phi(a_ind_pr[s]);
c_ind[s] <- Phi(c_ind_pr[s]) * 5;
}
la_A <- pow(sd_A, -2);
la_w <- pow(sd_w, -2);
la_a <- pow(sd_a, -2);
la_c <- pow(sd_c, -2);
}
model {
vector[4] p;
real Ev[4];
real dummy[4];
real theta;
real v;
# Prior on the group-level mean parameters
# probit scale [-Inf, Inf]
mu_A_pr ~ normal(0, 1);
mu_w_pr ~ normal(0, 1);
mu_a_pr ~ normal(0, 1);
mu_c_pr ~ normal(0, 1);
# Prior on the group-level standard deviation
sd_A ~ uniform(0,1.5);
sd_w ~ uniform(0,1.5);
sd_a ~ uniform(0,1.5);
sd_c ~ uniform(0,1.5);
# Individual-level paramters
for (s in 1:n_s)
{
A_ind_pr[s] ~ normal(mu_A_pr, sd_A);
w_ind_pr[s] ~ normal(mu_w_pr, sd_w);
a_ind_pr[s] ~ normal(mu_a_pr, sd_a);
c_ind_pr[s] ~ normal(mu_c_pr, sd_c);
}
for (s in 1 : n_s) // loop over subjects
{
theta <- pow(3, c_ind[s]) - 1;
// Trial 1
for (d in 1 : 4) // loop over decks
{
p[d] <- .25;
Ev[d] <- 0;
}
choice[s,1] ~ categorical(p);
// Remaining trials
for (t in 1 : (n_t - 1))
{
if (net[s,t] >= 0)
v <- pow(net[s,t], A_ind[s]);
else
v <- -1 * w_ind[s] * pow(abs(net[s,t]), A_ind[s]);
Ev[choice[s,t]] <- (1 - a_ind[s]) * Ev[choice[s,t]] + a_ind[s] * v;
for (d in 1 : 4) // loop over decks
dummy[d] <- exp(fmax(fmin(Ev[d] * theta, 450), -450));
for (d in 1 : 4) // loop over decks
p[d] <- dummy[d] / sum(dummy);
choice[s, t + 1] ~ categorical(p);
}
}
}
答案 0 :(得分:0)
“信息性消息”可能是Stan邮件列表中最常(未)回答的问题。
这就是说,我对你的“编译”错误意味着什么感到困惑。该模型不应该与该错误一起运行。