我是python&的新手图像处理。我正在做一个爱好项目,我想在其中找到图像中的所有圆圈,然后找出哪一个在其中标记了交叉('X')。到目前为止,我已经将一些代码放在一起找到了圆圈(下图)。它适用于一个图像,但无法识别另一个图像上的所有圆圈。请指导我如何提高find_circles算法的性能。
测试图片:
结果图片:
import cv2
import cv
import numpy as np
import operator
from PIL import Image
def find_circles(img):
im_gray = cv2.imread(img, cv2.CV_LOAD_IMAGE_GRAYSCALE)
(thresh, im_bw) = cv2.threshold(im_gray, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
img_bw = cv2.threshold(im_gray, thresh, 255, cv2.THRESH_BINARY)[1]
cv2.imwrite('img_bw.png',img_bw)
rows, cols =img_bw.shape
circles = cv2.HoughCircles(img_bw,cv.CV_HOUGH_GRADIENT,1,rows/32, param1=100,param2=40,minRadius=0,maxRadius=100)
circles = np.uint16(np.around(circles))
return circles
def draw_circles(img, circles):
img = cv2.imread(img,0)
cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)
for i in circles[0,:]:
# draw the outer circle
cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
# draw the center of the circle
cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
cv2.putText(cimg,str(i[0])+str(',')+str(i[1]), (i[0],i[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.4, 255)
return cimg
def main():
img = "query_circle9.png"
circles = find_circles(img)
img_circle = draw_circles(img,circles)
cv2.imwrite('cricle.png',img_circle)
if __name__=='__main__':
main()
答案 0 :(得分:5)
#!/usr/bin/env python
import cv2
def draw_circles(img, circles):
# img = cv2.imread(img,0)
cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)
for i in circles[0,:]:
# draw the outer circle
cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
# draw the center of the circle
cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
cv2.putText(cimg,str(i[0])+str(',')+str(i[1]), (i[0],i[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.4, 255)
return cimg
def detect_circles(image_path):
gray = cv2.imread(image_path, cv2.CV_LOAD_IMAGE_GRAYSCALE)
gray_blur = cv2.medianBlur(gray, 13) # Remove noise before laplacian
gray_lap = cv2.Laplacian(gray_blur, cv2.CV_8UC1, ksize=5)
dilate_lap = cv2.dilate(gray_lap, (3, 3)) # Fill in gaps from blurring. This helps to detect circles with broken edges.
# Furture remove noise introduced by laplacian. This removes false pos in space between the two groups of circles.
lap_blur = cv2.bilateralFilter(dilate_lap, 5, 9, 9)
# Fix the resolution to 16. This helps it find more circles. Also, set distance between circles to 55 by measuring dist in image.
# Minimum radius and max radius are also set by examining the image.
circles = cv2.HoughCircles(lap_blur, cv2.cv.CV_HOUGH_GRADIENT, 16, 55, param2=450, minRadius=20, maxRadius=40)
cimg = draw_circles(gray, circles)
print("{} circles detected.".format(circles[0].shape[0]))
# There are some false positives left in the regions containing the numbers.
# They can be filtered out based on their y-coordinates if your images are aligned to a canonical axis.
# I'll leave that to you.
return cimg
结果:
cimg = detect_circles("circles.png")
有一些遗留的错误检测。如果图像对齐,则可以根据y坐标过滤这些误报。我会留给你的。