解释分段混合效果输出

时间:2014-03-10 23:50:03

标签: r effects mixed piecewise

我试图理解分段混合效果模型的摘要输出,并且可以使用一些见解。具体来说,我想知道如何获得断点左右两侧的回归截距和斜率。根据我的理解,下面输出中给出的截距是断点左边的回归线,给出的值I(Days *(Days< 6.07))是该线的斜率。但是,我认为我(Days *(Days> = 6.07))不是断点右边的斜率,也不是两个斜率的差异。

library(lme4)
sleepstudy<-as.data.frame(sleepstudy)

我从前一个帖子中提取了断点:https://stats.stackexchange.com/questions/19772/estimating-the-break-point-in-a-broken-stick-piecewise-linear-model-with-rando

Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ I(Days * (Days < 6.07)) + I(Days * (Days >= 6.07)) +      (1 | Subject) 
   Data: sleepstudy 

REML criterion at convergence: 1784.369 

Random effects:
 Groups   Name        Variance Std.Dev.
 Subject  (Intercept) 1377.6   37.12   
 Residual              965.7   31.08   
Number of obs: 180, groups: Subject, 18

Fixed effects:
                         Estimate Std. Error t value
(Intercept)              252.2663    10.0545  25.090
I(Days * (Days < 6.07))   10.0754     1.3774   7.315
I(Days * (Days >= 6.07))  10.4513     0.8077  12.940

Correlation of Fixed Effects:
            (Intr) I(*(<6
I(D*(D<6.07 -0.409       
I(D*(D>=6.0 -0.374  0.630

我尝试通过删除随机效果来简化: 当I()包含在lm模型中时,斜率/截距与上面的混合模型非常相似,我仍然感到困惑。

  

mod_lm&lt; -lm(反应~I(天*(天数&lt; 6.07))+ I(天*(天数> = 6.07)),数据= sleepstudy)   摘要(mod_lm)

Call:
lm(formula = Reaction ~ I(Days * (Days < 6.07)) + I(Days * (Days >= 
    6.07)), data = sleepstudy)

Residuals:
     Min       1Q   Median       3Q      Max 
-111.581  -27.632    1.614   26.994  141.443 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)               252.266      7.629  33.066  < 2e-16 ***
I(Days * (Days < 6.07))    10.075      2.121   4.751 4.17e-06 ***
I(Days * (Days >= 6.07))   10.451      1.243   8.405 1.37e-14 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 47.84 on 177 degrees of freedom
Multiple R-squared:  0.2867,    Adjusted R-squared:  0.2786 
F-statistic: 35.57 on 2 and 177 DF,  p-value: 1.037e-13

然而,当从lm公式中移除I()时,我理解输出,结果是有意义的。

  

mod_lm&lt; -lm(反应〜天*(天数<6.07)+天*(天数> = 6.07),数据= sleepstudy)   摘要(mod_lm)

Call:
lm(formula = Reaction ~ Days * (Days < 6.07) + Days * (Days >= 
    6.07), data = sleepstudy)

Residuals:
     Min       1Q   Median       3Q      Max 
-114.214  -27.833    0.603   27.254  141.693 

Coefficients: (2 not defined because of singularities)
                      Estimate Std. Error t value Pr(>|t|)   
(Intercept)            207.008     64.211   3.224  0.00151 **
Days                    16.050      7.985   2.010  0.04595 * 
Days < 6.07TRUE         45.908     64.671   0.710  0.47872   
Days >= 6.07TRUE            NA         NA      NA       NA   
Days:Days < 6.07TRUE    -6.125      8.265  -0.741  0.45965   
Days:Days >= 6.07TRUE       NA         NA      NA       NA   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 47.91 on 176 degrees of freedom
Multiple R-squared:  0.2887,    Adjusted R-squared:  0.2766 
F-statistic: 23.81 on 3 and 176 DF,  p-value: 5.526e-13

当从Imer公式中删除I()项时,lmer将不会运行。

mod1<-lmer(Reaction ~ Days*(Days < 6.07) + Days*(Days>= 6.07) + (1|Subject), data = sleepstudy)
Error in lme4::lFormula(formula = Reaction ~ Days * (Days < 6.07) + Days *  : 
  rank of X = 4 < ncol(X) = 6

在模型预测变量上使用I()时,有人可以告诉我如何解释lmer()输出,还是告诉我如何在模型预测变量上运行没有I()的lmer()模型?

我感谢任何可用的指导,因为我无法在R帮助页面上找到任何指导!

谢谢。

1 个答案:

答案 0 :(得分:5)

我认为你可以得到你想要的东西如下:

library(lme4)
sleepstudy <- transform(sleepstudy,period=(Days<6.5))
(m0 <- lmer(Reaction ~ Days+ (1 | Subject), sleepstudy))
(m2 <- lmer(Reaction ~ Days*period+ (1 | Subject), sleepstudy))
## 
## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ Days * period + (1 | Subject) 
##    Data: sleepstudy 
## REML criterion at convergence: 1773.86 
## Random effects:
##  Groups   Name        Std.Dev.
##  Subject  (Intercept) 37.12   
##  Residual             31.06   
## Number of obs: 180, groups: Subject, 18
## Fixed Effects:
##     (Intercept)             Days       periodTRUE  Days:periodTRUE  
##         207.008           16.050           45.908           -6.125  

I()的结果是构造数字变量而不是分类变量(转换为虚拟变量)。也许你混淆的主要原因是你的第一组模型不允许按期间单独截取,只有单独的斜坡......

lmer对第二组模型不起作用的原因是lmer不像lm那样容忍过度参数化(多线性预测因子),尽管开发版本(在Github上可用,很快就会发布)是:如果你运行mod1它将适合模型并打印一条消息“固定效应模型矩阵排名不足,因此丢弃2列/系数”(不像{ {1}},它不保留带有lm系数的已删除列,只需完全删除它们。

更新

NA

有点难以看到斜坡的差异 - 非常微妙。

sleepstudy <- transform(sleepstudy,cDays=Days-6.5)
m3 <- lmer(Reaction ~ cDays:period+ (1 | Subject), sleepstudy)
library(ggplot2); theme_set(theme_bw())    
library(reshape2)
g0 <- ggplot(sleepstudy,aes(Days,Reaction,group=Subject))+geom_line()
pframe <- data.frame(Days=seq(0,8,length=101))
pframe <- transform(pframe,cDays=Days-6.5,period=Days>6.5)
## next line assumes latest version of lme4 -- you may need REform instead
pframe$Reaction <- predict(m3,newdata=pframe,re.form=NA)
pframe$Reaction2 <- predict(m0,newdata=pframe,re.form=NA)