在看了GGVIS的演讲后,我一直试图创建我的第一个Shiny / ggvis应用程序失败。我的情节在R中有效,但当我尝试将其迁移到Shiny应用程序以便在网络上显示时,我什么也得不到。单选按钮显示,我可以告诉它似乎工作(我使用rStudio / Shiny / Reactivity教程中的表测试,但它似乎不适合我的ggvis情节)。我一直在关注Rstudio上的教程,并使用ggvis源代码中的demo文件夹中的各个部分。我正在尝试创建一个简单的内核密度图,它根据用户输入对数据进行子集并显示分布。附件是我所拥有的可重现的例子。如果我在这里缺少什么,我将不胜感激。
# clear memory & load packages
rm(list=ls())
library(shiny)
library(ggvis)
# Define UI for distribution application
shinyUI(fluidPage(
# Application title
titlePanel("Diamond Carats by Color/Cut"),
# Sidebar with controls to select subset
sidebarLayout(
sidebarPanel(
radioButtons("cut", "Diamond Cut:",
c("Ideal" = "IDEAL",
"Premium" = "IDEAL",
"Good" = "GOOD",
"Very Good" = "VGOOD"))
),
# Display your plot created by GGvis
mainPanel(ggvis_output("my_plot"))
)
))
# clear memory & load packages
rm(list=ls())
library(shiny)
library(ggvis)
# Define server logic for distribution application
shinyServer(function(input, output, session) {
# load your data
dataset <- diamonds
# Reactive expression to generate the subset.
datasetInput <- reactive({
selection <-switch(input$cut,
IDEAL = "Ideal",
PREM = "Premium",
GOOD = "Good",
VGOOD = "Very Good")
subset(dataset, cut == selection)
})
# Generate your plot using GGvis and your reactive inputs
gv <- reactive({
ggvis(datasetInput(), by_group(color),
props(x = ~carat,
stroke = ~color,
fill = ~color,
fillOpacity := 0.2,
fillOpacity.hover := 0.7)) +
layer_density()
})
# necessary additions for ggvis integration to shiny
output$controls <- renderControls(gv)
observe_ggvis(gv, "my_plot", session)
})
编辑:为了跟进这个问题,我注意到如果删除以下内容:
by_group(color)
和
stroke = ~color,
fill = ~color,
从我在server.R中创建图形的调用中,图形运行(尽管没有多彩的分组,这是我首先想到的)并且单选按钮成功选择了我的数据子集。如上所述,当我在R中运行图形而不使用反应式子集函数时,图形能够运行并通过菱形颜色改变笔划/填充。目前Shiny to ggvis交互目前不支持此功能吗?或者我只是错误地解释了这个功能?这是我更新的代码,因此您可以看到我的结果:
# clear memory & load packages
rm(list=ls())
library(shiny)
library(ggvis)
# Define UI for distribution application
shinyUI(fluidPage(
# Application title
titlePanel("Diamond Carats by Color/Cut"),
# Sidebar with controls to select subset
sidebarLayout(
sidebarPanel(
radioButtons("cut", "Diamond Cut:",
c("Ideal" = "IDEAL",
"Premium" = "IDEAL",
"Good" = "GOOD",
"Very Good" = "VGOOD"))
),
# Display your plot created by GGvis
mainPanel(ggvis_output("my_plot"))
)
))
# clear memory & load packages
rm(list=ls())
library(shiny)
library(ggvis)
# Define server logic for distribution application
shinyServer(function(input, output, session) {
# load your data
dataset <- diamonds
# Reactive expression to generate the subset.
datasetInput <- reactive({
selection <-switch(input$cut,
IDEAL = "Ideal",
PREM = "Premium",
GOOD = "Good",
VGOOD = "Very Good")
subset(dataset, cut == selection)
})
# Generate your plot using GGvis and your reactive inputs
gv <- reactive({
ggvis(datasetInput(),
props(x = ~carat,
fillOpacity := 0.2,
fillOpacity.hover := 0.7)) +
layer_density()
})
# necessary additions for ggvis integration to shiny
output$controls <- renderControls(gv)
observe_ggvis(gv, "my_plot", session)
})