在R中拆分列

时间:2014-03-07 14:50:23

标签: r splitstackshape

我是R的新手,我有一个包含17列和超过1米行的大数据集。我想通过分隔符'/'将其中一列拆分为4。 R需要永远完成以下命令。有没有更好的方法来完成以下。我尽可能多地提供了代码信息,并希望得到任何帮助。

sample2 <- read.csv("week1.csv", header=TRUE)
summ1 <- subset(sample2,select= -c(3,7), subset =(SPORTS_ID =='1'))
summ1 <- summ1[,-c(1)]
library(splitstackshape)
summ2 <- concat.split.multiple(summ1,2 , "/")
summ2 <- summ2[,-c(1,15)]
summ3 <- concat.split.multiple(summ2,14, "v")
write.csv(summm3, file="test.csv")

4 个答案:

答案 0 :(得分:1)

您可以使用strsplit

dat <- data.frame(a = c("a/b/c/d",
                        "e/f/g/h"),
                  stringsAsFactors = FALSE)
#         a
# 1 a/b/c/d
# 2 e/f/g/h

cbind(dat, do.call(rbind, strsplit(dat$a, "/")))
#         a 1 2 3 4
# 1 a/b/c/d a b c d
# 2 e/f/g/h e f g h

答案 1 :(得分:1)

正如我在评论中提到的,如果您的数据是平衡的(也就是说,您希望在分割数据后得到一个漂亮的矩形数据集),那么您应该查看我的concat.split.DT函数。

以下是一些测试。

Sven的数据,但是有20K行而不是2

dat <- do.call(rbind, replicate(1e4, dat, simplify=FALSE))
dim(dat)
# [1] 20000     1

“stringr”函数可能有点慢:

library(stringr)
system.time(do.call(rbind, str_split(dat$a,  "/")))
#    user  system elapsed 
#   3.194   0.000   3.211 

但其他解决方案如何实现呢?

fun1 <- function() concat.split.multiple(dat, "a", "/")
fun2 <- function() do.call(rbind, strsplit(dat$a, "/", fixed=TRUE))
## ^^ fixed = TRUE will make a big difference
fun3 <- function() concat.split.DT(dat, "a", "/")

library(microbenchmark)
microbenchmark(fun1(), fun2(), fun3(), times = 10)
# Unit: milliseconds
#    expr       min        lq    median        uq       max neval
#  fun1() 530.46597 534.13486 535.19139 538.91488 553.61919    10
#  fun2()  30.22265  31.07287  31.81474  32.93936  40.28859    10
#  fun3()  22.57517  22.94169  23.10297  23.30907  31.97640    10

因此,对于常规concat.split.multiple(仅在引擎盖下使用read.table)大约需要半秒钟,而strsplitconcat.split.DT的结果要好得多({1}}后者使用了来自“data.table”的fread

让我们进一步扩大规模,现在达到100万行......

dat <- do.call(rbind, replicate(50, dat, simplify=FALSE))
dim(dat)
# [1] 1000000       1

microbenchmark(fun2(), fun3(), times = 5)
# Unit: seconds
#    expr      min       lq    median        uq       max neval
#  fun2() 6.257892 6.522199 13.728283 13.934860 14.277432     5
#  fun3() 1.671739 1.830485  2.203076  2.470872  2.572917     5

concat.split.DT方法的优点是可以使用简单的语法分割多个列:

dat2 <- do.call(cbind, replicate(5, dat, simplify = FALSE))
dim(dat2)
# [1] 1000000       5
names(dat2) <- make.unique(names(dat2))
head(dat2)
#         a     a.1     a.2     a.3     a.4
# 1 a/b/c/d a/b/c/d a/b/c/d a/b/c/d a/b/c/d
# 2 e/f/g/h e/f/g/h e/f/g/h e/f/g/h e/f/g/h
# 3 a/b/c/d a/b/c/d a/b/c/d a/b/c/d a/b/c/d
# 4 e/f/g/h e/f/g/h e/f/g/h e/f/g/h e/f/g/h
# 5 a/b/c/d a/b/c/d a/b/c/d a/b/c/d a/b/c/d
# 6 e/f/g/h e/f/g/h e/f/g/h e/f/g/h e/f/g/h

现在,让我们立刻拆分所有这些:

system.time(out <- concat.split.DT(dat2, names(dat2), "/"))
#    user  system elapsed 
#   6.260   0.040   6.532 
out
#          a_1 a_2 a_3 a_4 a.1_1 a.1_2 a.1_3 a.1_4 a.2_1 a.2_2 a.2_3 a.2_4 a.3_1
#       1:   a   b   c   d     a     b     c     d     a     b     c     d     a
#       2:   e   f   g   h     e     f     g     h     e     f     g     h     e
#       3:   a   b   c   d     a     b     c     d     a     b     c     d     a
#       4:   e   f   g   h     e     f     g     h     e     f     g     h     e
#       5:   a   b   c   d     a     b     c     d     a     b     c     d     a
#      ---                                                                      
#  999996:   e   f   g   h     e     f     g     h     e     f     g     h     e
#  999997:   a   b   c   d     a     b     c     d     a     b     c     d     a
#  999998:   e   f   g   h     e     f     g     h     e     f     g     h     e
#  999999:   a   b   c   d     a     b     c     d     a     b     c     d     a
# 1000000:   e   f   g   h     e     f     g     h     e     f     g     h     e
#          a.3_2 a.3_3 a.3_4 a.4_1 a.4_2 a.4_3 a.4_4
#       1:     b     c     d     a     b     c     d
#       2:     f     g     h     e     f     g     h
#       3:     b     c     d     a     b     c     d
#       4:     f     g     h     e     f     g     h
#       5:     b     c     d     a     b     c     d
#      ---                                          
#  999996:     f     g     h     e     f     g     h
#  999997:     b     c     d     a     b     c     d
#  999998:     f     g     h     e     f     g     h
#  999999:     b     c     d     a     b     c     d
# 1000000:     f     g     h     e     f     g     h

答案 2 :(得分:0)

这应该让你开始。您可能需要根据数据包含的内容调整正则表达式模式。可重复的例子会有所帮助。 How to make a great R reproducible example?

library(stringr)
df <- as.data.frame(cbind(x = seq(1,10,1), y = rep("first/second", 10)), stringsAsFactors = FALSE)
df
df$first <- str_replace(df$y, "\\/\\w+", "")
df$second <- str_replace(df$y, "\\w+\\/", "")
df

> df
    x            y first second
1   1 first/second first second
2   2 first/second first second
3   3 first/second first second
4   4 first/second first second
5   5 first/second first second
6   6 first/second first second
7   7 first/second first second
8   8 first/second first second
9   9 first/second first second
10 10 first/second first second

答案 3 :(得分:0)

如果您打算使用字符并且不介意列表,str_split包中的stringr应该有帮助

library(stringr)
x <- 'hello/hi/hey/hola'
str_split(x)
[[1]]
[1] "hello" "hi" "hey" "hola"