我有这段代码给出如下图表:
d=ggplot(df, aes(x=Year, y=NAO_Index, width=.8)) +
+ geom_bar(stat="identity", aes(fill=NAO_Index>0), position='identity', col = 'transparent') +
+ theme_bw() + scale_fill_manual(values=c("royalblue", "firebrick3"), name="NAO Oscillation", labels=c("Negative", "Positive"), guide=guide_legend(reverse=TRUE)) +
theme(legend.position=c(0.06, 0.92)) +
+ theme(axis.title.x=element_text(vjust=-0.2)) +
+ geom_line(data=dfmoveav, aes(x=Year ,y=moveav)) +
+ ylab("NAO Index") +
+ ggtitle("NAO Index between 1860 and 2050") +
+ scale_x_continuous(breaks=c(seq(1860,2050,10))) +
+ scale_y_continuous(breaks=c(seq(-3.5,3.5,0.5)))
我只关心最后一行。在图中,y轴仅从-3到2.5。我如何从-3.5到3.5得到它甚至是?
我确定我犯了一个简单的错误,但无法解决它!
非常感谢提前。
答案 0 :(得分:4)
你快到了。尝试设置限制。
d=ggplot(df, aes(x=Year, y=NAO_Index, width=.8)) +
+ geom_bar(stat="identity", aes(fill=NAO_Index>0), position='identity', col = 'transparent') +
+ theme_bw() + scale_fill_manual(values=c("royalblue", "firebrick3"), name="NAO Oscillation", labels=c("Negative", "Positive"), guide=guide_legend(reverse=TRUE)) +
theme(legend.position=c(0.06, 0.92)) +
+ theme(axis.title.x=element_text(vjust=-0.2)) +
+ geom_line(data=dfmoveav, aes(x=Year ,y=moveav)) +
+ ylab("NAO Index") +
+ ggtitle("NAO Index between 1860 and 2050") +
+ scale_x_continuous(breaks=c(seq(1860,2050,10))) +
+ scale_y_continuous(breaks=c(seq(-3.5,3.5,0.5)), limits = c(-3.5, 3.5))
有关它的更多信息here
要将线条映射到图例,您应该将变量映射到美学。但这不是微不足道的,你会找到避免这种方法的参考。
df <- data.frame(year=factor(seq(1:10)),
nao = rnorm(10, 0, 2),
mov = rnorm(10, 0,3))
df2 <- data.frame(year=factor(seq(1:10)),
mov = df$nao+rnorm(10, 0, 0.1),
g = .1)
ggplot() +
geom_bar(data = df, aes(x=year, y=nao, fill=nao > 0), width=.8,
stat="identity", position ='identity', col = 'transparent') +
geom_line(data = df2, aes(x = year, y = mov, group = g, size = g)) +
scale_fill_manual(values=c("royalblue", "firebrick3"),
name="NAO Oscillation",
labels=c("Negative", "Positive"),
guide=guide_legend(reverse=TRUE)) +
scale_size('Trend', range = 1, labels = 'Moving\naverage') +
ggtitle("NAO Index between 1860 and 2050") +
scale_y_continuous(breaks=c(seq(-5,5,0.5)), limits = c(-5, 5)) +
ylab("NAO Index") +
theme(legend.position = c(0.07, 0.80),
axis.title.x = element_text(vjust= -0.2),
legend.background = element_blank())
这可能不是将变量映射到美学的最佳方法。