我正在使用pandas.rolling_apply
将数据拟合到分布中并从中获取值,但我需要它还报告滚动的拟合优度(特别是p值)。目前我这样做:
def func(sample):
fit = genextreme.fit(sample)
return genextreme.isf(0.9, *fit)
def p_value(sample):
fit = genextreme.fit(sample)
return kstest(sample, 'genextreme', fit)[1]
values = pd.rolling_apply(data, 30, func)
p_values = pd.rolling_apply(data, 30, p_value)
results = pd.DataFrame({'values': values, 'p_value': p_values})
问题是我有很多数据,而且拟合函数很昂贵,所以我不想为每个样本调用两次。我宁愿做的是这样的事情:
def func(sample):
fit = genextreme.fit(sample)
value = genextreme.isf(0.9, *fit)
p_value = kstest(sample, 'genextreme', fit)[1]
return {'value': value, 'p_value': p_value}
results = pd.rolling_apply(data, 30, func)
结果是DataFrame
,其中包含两列。如果我尝试运行它,我会得到一个例外:
TypeError: a float is required
。是否有可能实现这一目标,如果是,如何实现?
答案 0 :(得分:3)
我有一个类似的问题,并通过在应用期间使用单独的助手类的成员函数来解决它。该成员函数根据需要返回单个值,但我将其他calc结果存储为类的成员,然后可以使用它。
简单示例:
class CountCalls:
def __init__(self):
self.counter = 0
def your_function(self, window):
retval = f(window)
self.counter = self.counter + 1
TestCounter = CountCalls()
pandas.Series.rolling(your_seriesOrDataframeColumn, window = your_window_size).apply(TestCounter.your_function)
print TestCounter.counter
假设你的函数f将返回两个值为v1,v2的元组。然后,您可以返回v1并将其分配给column_v1到您的数据帧。第二个值v2只是在helper类中的Series series_val2中累积。之后,您只需将该系列作为数据框的新列。 JML
答案 1 :(得分:2)
之前我遇到过类似的问题。这是我的解决方案:
from collections import deque
class your_multi_output_function_class:
def __init__(self):
self.deque_2 = deque()
self.deque_3 = deque()
def f1(self, window):
self.k = somefunction(y)
self.deque_2.append(self.k[1])
self.deque_3.append(self.k[2])
return self.k[0]
def f2(self, window):
return self.deque_2.popleft()
def f3(self, window):
return self.deque_3.popleft()
func = your_multi_output_function_class()
output = your_pandas_object.rolling(window=10).agg(
{'a':func.f1,'b':func.f2,'c':func.f3}
)
答案 2 :(得分:1)
我也有同样的问题。我通过生成一个全局数据框并从滚动功能中提供它来解决它。在以下示例脚本中,我生成随机输入数据。然后,我用一个滚动应用函数计算min,max和mean。
import pandas as pd
import numpy as np
global outputDF
global index
def myFunction(array):
global index
global outputDF
# Some random operation
outputDF['min'][index] = np.nanmin(array)
outputDF['max'][index] = np.nanmax(array)
outputDF['mean'][index] = np.nanmean(array)
index += 1
# Returning a useless variable
return 0
if __name__ == "__main__":
global outputDF
global index
# A random window size
windowSize = 10
# Preparing some random input data
inputDF = pd.DataFrame({ 'randomValue': [np.nan] * 500 })
for i in range(len(inputDF)):
inputDF['randomValue'].values[i] = np.random.rand()
# Pre-Allocate memory
outputDF = pd.DataFrame({ 'min': [np.nan] * len(inputDF),
'max': [np.nan] * len(inputDF),
'mean': [np.nan] * len(inputDF)
})
# Precise the staring index (due to the window size)
d = (windowSize - 1) / 2
index = np.int(np.floor( d ) )
# Do the rolling apply here
inputDF['randomValue'].rolling(window=windowSize,center=True).apply(myFunction,args=())
assert index + np.int(np.ceil(d)) == len(inputDF), 'Length mismatch'
outputDF.set_index = inputDF.index
# Optional : Clean the nulls
outputDF.dropna(inplace=True)
print(outputDF)
答案 3 :(得分:1)
我使用和喜爱@ yi-yu的答案,所以我把它变成了通用的:
from collections import deque
from functools import partial
def make_class(func, dim_output):
class your_multi_output_function_class:
def __init__(self, func, dim_output):
assert dim_output >= 2
self.func = func
self.deques = {i: deque() for i in range(1, dim_output)}
def f0(self, *args, **kwargs):
k = self.func(*args, **kwargs)
for queue in sorted(self.deques):
self.deques[queue].append(k[queue])
return k[0]
def accessor(self, index, *args, **kwargs):
return self.deques[index].popleft()
klass = your_multi_output_function_class(func, dim_output)
for i in range(1, dim_output):
f = partial(accessor, klass, i)
setattr(klass, 'f' + str(i), f)
return klass
并且给出了pandas系列的函数f
(窗口但不一定)返回n
值,您可以这样使用它:
rolling_func = make_class(f, n)
# dict to map the function's outputs to new columns. Eg:
agger = {'output_' + str(i): getattr(rolling_func, 'f' + str(i)) for i in range(n)}
windowed_series.agg(agger)