我试图想出一个python脚本来提取侧翼给定氨基酸(每个方向6个)的12个氨基酸序列,一个fasta序列。
我有2个输入:一个fasta文件和一个熊猫数据框。
fasta文件如下所示:
> sp|P00001| some text here 1
MKLLILTCLVAVALARPKHPIKKVSPTFDTNMVGKHQGLPQEVLNENLLRFFVAPFPEVFGKEKVSLDAGPGMCSRNE
>sp|P00002| some text here 2
MSSGNAKIGHPAPNFKATAVMPDGQFKDISLSDYKGKYVVFFFYPLDFTFVCPTGLGRSSYRATSCLPALCLP
>sp|P00003| some text here 3
MSVLDSGNFSWKMTEACMKVKIPLVKKKSLRQNLIENGKLKEFMRTHKYNLGSKYIREAATLVSEQPLQN
这是我的第二个输入,一个大熊猫数据框(2列' ProteinID'和#39; Phosphopeptide')
ProteinID -- Phosphopeptide
P00001 -- KVSPT*FDTNMVGK
P00001 -- SLDAGPGMCS*R
P00003 -- LDS*GNFSWKMTEACMK
我需要做的是以下内容。对于每种磷酸肽,我需要在fasta文件头中找到蛋白质(ProteinID)(从'>'开始)。然后我需要用星号标记提取氨基酸之前和之后的6个氨基酸。
我的输出是写入数据框的新列,如下所示:
ProteinID -- Phosphopeptide -- NewColumn
P00001 -- KVSPT*FDTNMVGK -- IKKVSPTFDTNMV
P00001 -- SLDAGPGMCS*R -- AGPGMCSRNE
P00003 -- LDS*GNFSWKMTEACMK -- MSVLDSGNFSWK
请注意,后两行在其各自蛋白质的末端或开头含有肽,因此在这些情况下我们不需要提取12个氨基酸。
我很难(编程经验很少)编写这个程序,非常感谢任何帮助(建议,提示,功能等)。
答案 0 :(得分:0)
这是一个提取相关子字符串的函数:
def flank(seq, pp):
# 1: find the position of the AA preceding the '*' marker in the
# phosphopeptide
marked_pos = pp.find('*') - 1
if (marked_pos < 0):
raise ValueError("invalid phosphopeptide string")
# 2: find the phosphopeptide (without '*') in the sequence
pp_pos = s.find(pp.replace('*', ''))
if pp_pos == -1:
raise ValueError("phosphopeptide not found in the sequence")
# avoid a negative starting index
start = max(0, pp_pos + marked_pos - 6)
# 3: use slicing to produce the result
return seq[start : pp_pos + marked_pos + 7]
示例:
seq = "MKLLILTCLVAVALARPKHPIKKVSPTFDTNMVGKHQGLPQEVLNENLLRFFVAPFPEVFGKEKVSLDAGPGMCSRNE"
pp = "KVSPT*FDTNMVGK"
print(flank(seq, pp))
打印:
IKKVSPTFDTNMV
答案 1 :(得分:0)
嗨请检查一下:我的fasta文件名为'txt':
段:
#!/usr/bin/python
import re
protein_dict = [
('P00001', 'KVSPT*FDTNMVGK'),
('P00001', 'SLDAGPGMCS*R'),
('P00003', 'LDS*GNFSWKMTEACMK')
]
protein_id = None
def prepare_structure_from_fasta(file):
fasta_structure = dict()
with open(file, 'r') as fh:
for line in fh:
if '>' in line:
protein_id = line.split('|')[1]
else:
if not protein_id:
raise Exception("Wrong fasta file structure")
fasta_structure[protein_id] = line.strip()
return fasta_structure
def match(pattern, string):
matc = re.search(pattern, string)
if matc:
return matc.groups()[0]
return None
fasta_struct = prepare_structure_from_fasta('txt')
final_struct = []
for pro_d in protein_dict:
pro_id = pro_d[0]
pep_id = pro_d[1]
first, second = pep_id.split('*')
if len(first) <= 6:
f_count = 7 - len(first)
else:
first = first[len(first) - 7:]
f_count = 0
if len(second) <= 6:
s_count = 7 - len(second)
else:
second = second[0:6]
s_count = 0
_regex = '([A-Z]{0,%d}%s%s[A-Z]{0,%d})' % (f_count,first,second,s_count)
final_struct.append((pro_id, pep_id, match(_regex, fasta_struct[pro_id])))
for pro in final_struct:
print pro
输出:
('P00001', 'KVSPT*FDTNMVGK', 'IKKVSPTFDTNMV')
('P00001', 'SLDAGPGMCS*R', 'AGPGMCSRNE')
('P00003', 'LDS*GNFSWKMTEACMK', 'MSVLDSGNFSWK')