在R中我想微调我的qplot

时间:2014-03-03 22:30:51

标签: r plot ggplot2

我有这段代码:

我的数据集:

 founder wt.Df Replicate Block Food_Source Viability   avg_val
1       A3  5905         1     1    Nicotine 0.4444444 0.4444444
2       A3 24834         1     1    Nicotine 0.6190476 0.6190476
3       A3 27861         1     1    Nicotine 0.4210526 0.5200501
4       A3 27861         2     1    Nicotine 0.6190476 0.5200501
5       A4  5905         1     1    Nicotine 0.7142857 0.7689076
6       A4  5905         2     1    Nicotine 0.8235294 0.7689076
7       A4 24834         1     1    Nicotine 0.4285714 0.5476190
8       A4 24834         1     1    Nicotine 0.6666667 0.5476190
9       A4 27861         1     1    Nicotine 0.6666667 0.6904762
10      A4 27861         1     1    Nicotine 0.7142857 0.6904762

qplot(x=founder, y=avg_val, group=wt.Df, data=Store, geom="line", colour = Store$wt.Df,      main= "QCT on Nicotine", xlab = "Founder", ylab = "Average Viability") + geom_point()

enter image description here

我想要做的是使用Store $ wt.Df来定义每条线的含义,我想查看与它对应的颜色线,并在图例右侧标记为wt.Df

1 个答案:

答案 0 :(得分:1)

我不太确定你想要什么。是否可以像将colour=Store$wt.Df更改为colour=factor(Store$wt.Df)一样轻松?

Store = read.table(text="founder wt.Df Replicate Block Food_Source Viability   avg_val
1       A3  5905         1     1    Nicotine 0.4444444 0.4444444
2       A3 24834         1     1    Nicotine 0.6190476 0.6190476
3       A3 27861         1     1    Nicotine 0.4210526 0.5200501
4       A3 27861         2     1    Nicotine 0.6190476 0.5200501
5       A4  5905         1     1    Nicotine 0.7142857 0.7689076
6       A4  5905         2     1    Nicotine 0.8235294 0.7689076
7       A4 24834         1     1    Nicotine 0.4285714 0.5476190
8       A4 24834         1     1    Nicotine 0.6666667 0.5476190
9       A4 27861         1     1    Nicotine 0.6666667 0.6904762
10      A4 27861         1     1    Nicotine 0.7142857 0.6904762",header=TRUE)

qplot(x=founder, y=avg_val, group=wt.Df, data=Store, geom="line", colour = factor(Store$wt.Df),      
      main= "QCT on Nicotine", xlab = "Founder", ylab = "Average Viability") + geom_point()

enter image description here