矢量添加流

时间:2014-03-02 10:49:55

标签: vector cuda parallel-processing

我已经看到了这个问题vector addition in CUDA using streams,但这不是我的代码的问题。虽然我得到了同样的错误,但根本原因是不同的。当我编译时,我收到以下错误。

解决方案不正确。该解决方案与第0行的预期结果不匹配。期望(1 + 0.5 = 1.5)但得到0。

我尝试在内核中打印值,发现计算是正确的。但是当我从设备复制到主机时,我看到所有零都被打印出来。

#include<wb.h>

#define wbCheck(stmt) do {                                                    \
        cudaError_t err = stmt;                                               \
        if (err != cudaSuccess) {                                             \
            wbLog(ERROR, "Failed to run stmt ", #stmt);                       \
            wbLog(ERROR, "Got CUDA error ...  ", cudaGetErrorString(err));    \
            return -1;                                                        \
        }                                                                     \
    } while(0)

#define NUM_STREAMS 2

__global__ void vecAdd(float * in1, float * in2, float * out, int len) {
    //@@ Insert code to implement vector addition here
    int i = blockIdx.x*blockDim.x + threadIdx.x;

    if(i< len)
    {

        out[i]= in1[i]+in2[i];
        printf("Thread %d %f  %f  out %f\n",i,in1[i],in2[i],out[i]);
    }
}

int main(int argc, char ** argv) {
    wbArg_t args;
    int inputLength;
    float * hostInput1;
    float * hostInput2;
    float * hostOutput;
    float * deviceInput1;
    float * deviceInput2;
    float * deviceOutput;

    args = wbArg_read(argc, argv);

    wbTime_start(Generic, "Importing data and creating memory on host");
    hostInput1 = (float *) wbImport(wbArg_getInputFile(args, 0), &inputLength);
    hostInput2 = (float *) wbImport(wbArg_getInputFile(args, 1), &inputLength);
    hostOutput = (float *) malloc(inputLength * sizeof(float));
    wbTime_stop(Generic, "Importing data and creating memory on host");

    float *h_A, *h_B, *h_C;
    float *d_A0, *d_B0, *d_C0; //Device memory for stream0
    float *d_A1, *d_B1, *d_C1; //Device memory for stream1

    cudaHostAlloc((void**)&h_A, inputLength*sizeof(float), cudaHostAllocDefault);
    cudaHostAlloc((void**)&h_B, inputLength*sizeof(float), cudaHostAllocDefault);
    cudaHostAlloc((void**)&h_C, inputLength*sizeof(float), cudaHostAllocDefault);

    memcpy(h_A, hostInput1,inputLength*sizeof(float));
    memcpy(h_B, hostInput2,inputLength*sizeof(float));
    printf("%f %f\n", h_A[0],hostInput1[0]);
    printf("%f %f \n",h_A[1],hostInput1[1]);

    printf("Input length is %d\n", inputLength);


    int nstreams = NUM_STREAMS;
    cudaStream_t *streams = (cudaStream_t*) malloc(nstreams * sizeof(cudaStream_t));
    for(int i = 0; i < nstreams; i++)
        cudaStreamCreate(&(streams[i]));


    long segSize = 1024;

    wbCheck(cudaMalloc((void **)&d_A0, segSize*sizeof(float)));
    wbCheck(cudaMalloc((void **)&d_A1, segSize*sizeof(float)));
    wbCheck(cudaMalloc((void **)&d_B0, segSize*sizeof(float)));
    wbCheck(cudaMalloc((void **)&d_B1, segSize*sizeof(float)));
    wbCheck(cudaMalloc((void **)&d_C0, segSize*sizeof(float)));
    wbCheck(cudaMalloc((void **)&d_C1, segSize*sizeof(float)));


    for(int i=0; i< inputLength; i+=segSize*2)
    {

        if(i+segSize <= inputLength)
        {
            cudaMemcpyAsync(d_A0,h_A+i,segSize*sizeof(float),cudaMemcpyHostToDevice,streams[0]);
            cudaMemcpyAsync(d_B0,h_B+i,segSize*sizeof(float),cudaMemcpyHostToDevice,streams[0]);

            if(i+2*segSize <= inputLength )
            {
                cudaMemcpyAsync(d_A1,h_A+i+segSize,segSize*sizeof(float),cudaMemcpyHostToDevice,streams[1]);
                cudaMemcpyAsync(d_B1,h_B+i+segSize,segSize*sizeof(float),cudaMemcpyHostToDevice,streams[1]);
            }
            else
            {
                cudaMemcpyAsync(d_A1,h_A+i+segSize,(inputLength-i-segSize)*sizeof(float),cudaMemcpyHostToDevice,streams[1]);
                cudaMemcpyAsync(d_B1,h_B+i+segSize,(inputLength-i-segSize)*sizeof(float),cudaMemcpyHostToDevice,streams[1]);

            }
        }
        else
        {
            cudaMemcpyAsync(d_A0,h_A+i,(inputLength-i)*sizeof(float),cudaMemcpyHostToDevice,streams[0]);
            cudaMemcpyAsync(d_B0,h_B+i,(inputLength-i)*sizeof(float),cudaMemcpyHostToDevice,streams[0]);
        }


        if(i+segSize <= inputLength)
        {

            vecAdd<<<segSize/256, 256, 1, streams[0]>>>(d_A0,d_B0,d_C0, segSize);
            if(i+2*segSize <= inputLength )
            {
                vecAdd<<<segSize/256, 256, 1, streams[1]>>>(d_A1,d_B1,d_C1, segSize);
            }
            else
            {
                vecAdd<<<segSize/256, 256, 1, streams[1]>>>(d_A1,d_B1,d_C1, inputLength-i-segSize);
            }

        }
        else
        {
            vecAdd<<<segSize/256, 256, 1, streams[0]>>>(d_A0,d_B0,d_C0, inputLength-i);
        }


        if(i+segSize <= inputLength)
        {
            cudaMemcpyAsync(h_C+i,d_C0,segSize*sizeof(float),cudaMemcpyDeviceToHost,streams[0]);

            if(i+2*segSize <= inputLength )
            {
                                    cudaMemcpyAsync(h_C+i+segSize,d_C1,segSize*sizeof(float),cudaMemcpyDeviceToHost,streams[1]);
                printf("hello %f\n", h_C[0]);
            }
            else
            {
                cudaMemcpyAsync(h_C+i+segSize,d_C1,(inputLength-i-segSize)*sizeof(float),cudaMemcpyDeviceToHost,streams[1]);
            }
        }
        else
        {
            cudaMemcpyAsync(h_C+i,d_C0,(inputLength-i)*sizeof(float),cudaMemcpyDeviceToHost,streams[0]);
        }
    }

    memcpy(hostOutput, h_C, inputLength*sizeof(float)); 

    wbSolution(args, hostOutput, inputLength); //hostOutput and h_C contains all zeroes 

    free(hostInput1);
    free(hostInput2);
    free(hostOutput);

    cudaFree(d_A0);
    cudaFree(d_A1);
    cudaFree(d_B0);
    cudaFree(d_B1);
    cudaFree(d_C0);
    cudaFree(d_C1);

    return 0;
}

1 个答案:

答案 0 :(得分:1)

正如@hubs在下面的评论中建议我应该使用cudaDeviceSynchronize();在memcpy之前,这个建议有效。