CUDA中指令重放的其他原因

时间:2014-02-28 18:51:49

标签: cuda profiling

这是我从nvprof(CUDA 5.5)获得的输出:

Invocations                 Metric Name              Metric Description         Min         Max         Avg
Device "Tesla K40c (0)"
Kernel: MyKernel(double const *, double const *, double*, int, int, int)
     60            inst_replay_overhead     Instruction Replay Overhead    0.736643    0.925197    0.817188
     60          shared_replay_overhead   Shared Memory Replay Overhead    0.000000    0.000000    0.000000
     60          global_replay_overhead   Global Memory Replay Overhead    0.108972    0.108972    0.108972
     60    global_cache_replay_overhead  Global Memory Cache Replay Ove    0.000000    0.000000    0.000000
     60           local_replay_overhead  Local Memory Cache Replay Over    0.000000    0.000000    0.000000
     60                gld_transactions        Global Load Transactions       25000       25000       25000
     60                gst_transactions       Global Store Transactions       75000       75000       75000
     60  warp_nonpred_execution_efficie  Warp Non-Predicated Execution       99.63%      99.63%      99.63%
     60                       cf_issued  Issued Control-Flow Instructio       44911       45265       45101
     60                     cf_executed  Executed Control-Flow Instruct       39533       39533       39533
     60                     ldst_issued  Issued Load/Store Instructions      273117      353930      313341
     60                   ldst_executed  Executed Load/Store Instructio       50016       50016       50016
     60              stall_data_request  Issue Stall Reasons (Data Requ      65.21%      68.93%      67.86%
     60                   inst_executed           Instructions Executed      458686      458686      458686
     60                     inst_issued             Instructions Issued      789220      879145      837129
     60                     issue_slots                     Issue Slots      716816      803393      759614

内核使用356字节的cmem [0]而没有共享内存。此外,没有注册溢出。 我的问题是,在这种情况下,教学重播的原因是什么?我们看到81%的开销,但数字不会加起来。

谢谢!

1 个答案:

答案 0 :(得分:2)

一些可能的原因:

  1. 共享内存库冲突(您没有)
  2. 常量内存冲突(即,warp中的不同线程请求来自同一指令的常量内存中的不同位置)
  3. warp-divergent代码(if..then..else为warp中的不同线程采用不同的路径)
  4. presentation可能会引起关注,尤其是幻灯片8-11。